Wainwright Traffic Study

- Highway 14 from 1 Street to Highway 41
- 23 Avenue from 23 Street to Highway 41
- Highway 41 from 23 Avenue to Highway 14

Prepared for: Town of Wainwright January 17, 2025 Project #: 4022-001

INVISTEC CONSULTING LTD.

INNOVATION INTEGRITY EXCELLENCE

Wainwright Traffic Study

- Highway 14 from 1 Street to Highway 41
- 23 Avenue from 23 Street to Highway 41 .
- Highway 41 from 23 Avenue to Highway 14

Final Report January 17, 2025

Prepared by:

Devon Mackie, E.I.T. Darren Wong, E.I.T. Robyn Gueutal **Richard Reid** Merilyn Carlstad Paul Chan, P.Eng., M.Sc.

PERMIT TO PRACTICE
RM SIGNATURE: 48676 RM APEGA ID & 48676 DATE: 17/2025
PERMIT NUMBER: P011404 The Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Verified by:

Paul Chan, P. Eng., M.Sc.

Invistec Consulting Ltd. Suite 1700 - 10130 103 Street NW Edmonton, Alberta T5J 3N9

TABLE OF CONTENTS

1.	Intr	oduction	1
	1.1	Background	1
	1.2	Study Area / Goals	2
	1.3	Study Methodology	3
	1.4	Report Organization	4
	1.5	Reference Materials / Report Reviewed	5
2.	Stu	dy Locations and Issues	7
	2.1	Corridor 1 - Intersections and Accesses on Highway 14 from 1 Street to Highway 41.	7
	2.2	Corridor 2 – 23 Avenue from 23 Street to Highway 41	. 19
	2.3	Corridor 3 – Highway 41 from 23 Avenue to Highway 14	20
3.	Inte	ersection Assessments	22
	3.1	Methodology	.22
	3.2	Collision Analysis	23
	3.3	Traffic Counts	25
	3.4	Truck Volumes	25
	3.5	Traffic Forecasts	.27
	3.6	Intersection Analysis	29
4.	Acc	cess Management Assessments (Highway 14 from 1 Street to Highway 41)	34
	4.1	Design Vehicles	34
	4.2	Access Treatment Options	34
	4.3	Corridor Access Management Options	34
	4.4	Detailed Assessment of the TWLTL Option	39
	4.5	Access Management Options Selected	44
5.	Cor	nclusions and Recommendations	46
	5.1	Conclusions & Recommendations - Corridor 1	46
	5.2	Conclusions & Recommendations - Corridor 2	56
	5.3	Conclusions & Recommendations - Corridor 3	59
	5.4	Conclusions & Recommendations - Accesses and Intersections	62
	5.5	Additional Comments related to Overlaying for Highway 14	73

LIST OF APPENDICES

Appendix A	Exhibit 1 - Study Corridors
Appendix B	Chapter 2 Exhibits
Appendix C	Collision Records and Diagrams
Appendix D	Intersection Traffic Counts (2022 & 2023)
Appendix E	10 Year & 20 Year Traffic Forecasts
Appendix F	Traffic Signal Warrant Analysis Results
Appendix G	HCS Analysis Results (Roundabouts, Highway 14 & 1 Street)
Appendix H	Chapter 5 Exhibits
Appendix I	Swept Path Analysis

1. INTRODUCTION

1.1 BACKGROUND

The *Wainwright RCMP Traffic Safety Plan 2022-2024* provides the following detailed introduction on the Town of Wainwright:

"The Town of Wainwright is located on the north side of the Canadian National Railway, 61 kilometers south of Vermilion, in the Battle River valley, along Highway 41, called the Buffalo Trail. Provincial Highway 14 also passes through the town. Wainwright is 206 km southeast of the City of Edmonton on Highway 14, and 69 kilometers west of the Alberta-Saskatchewan border..... Canadian Forces Base Wainwright (CFB Wainwright) is located adjacent to the Town of Wainwright..... The military population on base averages over 1,100 personnel at any given time, and in the summer it grows significantly when hundreds of primary reservists undertake annual training..... The Canadian Forces Base/Area Support Unit (CFB/ASU) Wainwright is very important to the Town of Wainwright..... Military presence in the area is planned to continue to grow in the future..... Agriculture is a very large part of industry within the municipal districts, making up approximately 40% of (Wainwright's) work force..... The oil and gas industry plays a key part in the operations of local businesses.... since the 1950's..... Approximately 40% of the oil and gas work force reside in the Town of Wainwright."

Additional literature research (Safety Report 2017-2019) also reveals that the Town was experiencing considerable growth due to the large Oil and Gas industry in the Hardisty area which is 45 minutes to the southwest of Wainwright..... Several oil and gas companies are now working out of Wainwright. - *Wainwright Traffic Safety Plan 2017-2019*.

In addition, the Wainwright Stampede holds a 3-day event every year. The Stampede ground is located south of 1 Avenue, 200m east of 14 Street..... A covered grandstand was built to seat over 3,500 spectators – June 16, 2023 article on *Whatsyourshare.ca*. (Note: In 2025, the Wainwright Stampede will be held on June 20-22, 2025. It is anticipated that considerable event traffic will travel through the following key intersections in the Town - Highway 14 & 1 Street, Highway 14 & 14 Street, Highway 14 & 27 Street, and potentially also 1 Avenue & Highway 41)

Data from the *Alberta Regional Dashboard* shows that the population of Wainwright in 2023 was 6,782. Over the past 23 years (2001 to 2023), Wainwright has been growing at an annual population growth rate of 1.3%/year. A faster population growth trend was observed between 2002 and 2014 – at 1.8%/year, and a slower population growth trend was observed between 2014 and 2023 – at 0.3%/year). The exhibit below illustrates the population growth trend between 2001 and 2023.

Final Report, January 2025

1.2 STUDY AREA / GOALS

Invistec Consulting Ltd. was retained by the Town of Wainwright to carry out a Traffic Study to examine the long-term needs of the full development of the industrial park land west of Highway 41 between Highway 14 and 23 Avenue. For the purpose of this Study, it was assumed that the industrial park land will be fully developed in 20 years.

The main purposes of the Study include:

- <u>Corridor 1</u> Impact of short-term (10-Year) and long-term (20-Year) traffic growth on the intersections along Highway 14 through the Town. There are, in total, 12 intersections and 16 accesses over 3.3 km between 1 Street and Highway 41. A detailed assessment on the intersection and access operations and geometry (to check how they can accommodate the design vehicles) was carried out to come up with a recommended access management strategy on various segments of Highway 14 through Wainwright.
- <u>Corridor 2</u> The proposed road requirement of a new 840m corridor, 23 Avenue, connecting 23 Street to Highway 41. This includes a future intersection to the north extension of 27 Street. Details identified include right-of-way requirements, road widths, location of street appurtenances and trees, and pavement structure (with reference to the Town's Municipal Standards - *Wainwright Municipal Standards*).
- <u>Corridor 3</u> The intersection requirements of the following intersection / Access over 800m on Highway 41 – at 23 Avenue and at 17 Avenue (right-in/right-out). The needs for the two intersection / access were examined. Details identified include intersection type, length of acceleration taper / deceleration taper / parallel lanes / storage lanes, and pavement markings.

The locations of the above three corridors are illustrated below as well as in Exhibit 1 in Appendix A.

Final Report, January 2025

The existing layout of the intersections and accesses along Highway 14 (Corridor 1) are shown in Exhibits 2.1.1 to 2.1.10. Recommendations for improvements at these intersections and accesses are shown in Exhibits 5.1.1 to 5.1.10.

The 23 Avenue corridor (Corridor 2, greenfield) is shown in Exhibits 2.2.1 to 2.2.3. The recommended Corridor 2 is shown in Exhibits 5.2.1 to 5.2.3.

The Highway 41 Corridor (Corridor 3) is shown in Exhibits 2.3.1 to 2.3.3. The recommended intersection treatments along the corridor are sown in Exhibits 5.3.1 to 5.3.3.

The Study also reviewed the findings and recommendations of past studies completed for the Town. Refer to **Section 2** for a brief discussion of the findings and recommendations from these studies.

A list of the past studies as well as the references and reports / standards / guidelines reviewed in this Study is provided in **Section 1.5**.

1.3 STUDY METHODOLOGY

Corridor 1 - Highway 14 through Wainwright

A thorough assessment was conducted at every single access and intersection along Highway 14. Two design vehicles were identified – WB-21 (Tractor Semi-Trailer, TST, a design vehicle used by the Province for the design of key highway intersections), and I-BUS (Inter-City Highway Buses including Coach Buses and "Greyhound" buses).

A cursory traffic forecasting exercise was undertaken to determine the traffic forecasts resulting from the full development of the industrial park land north of Highway 14 and west of Highway 41. A growth factor was applied to the through traffic on Highway 14 determined by estimating the percent of Highway 14 traffic that can be considered as through traffic.

The intersection analyses undertaken include:

Chapter 1 - Introduction

- Intersection capacity analysis using Synchro 12 / SimTraffic software.
- Roundabout capacity analysis using the Highway Capacity Software for 2-lane roundabouts.
- Intersection Type Warrant Analysis (ATEC HGDG) to identify long term intersection type requirements at the 23 Avenue & Highway 41 intersection.
- Traffic signal warrant analysis (TAC Procedures).
- Roundabout layout (footprint) requirements for the Highway 14 & 1 Street intersection.
- Review of the traffic signal operation and controller database for the Highway 14 / 27 Street intersection traffic signal and the Highway 14 / 14 Street intersection traffic signal.
- Detailed design vehicle swept path checks for every intersection and access on Highway 14 for the existing intersection / access layout as well as a potential intersection layout under the Two-Way-Left-Turn-Lane access management concept.
- The 2019 to 2023 collision data on Highway 14 were examined and collision diagrams were prepared.
- The outcome of the above assessments helped identify the most suitable intersection upgrading requirements and access treatments.
- The assessments also helped evaluate the potential impacts of closing off two service road connections at (1) the north leg of 18 Street connecting to the North Service Road of Highway 14, and at (2) the south leg of 23 Street connecting to the South Service Road (13 Avenue) of Highway 14.

Corridor 2 - 23 Avenue from 23 Street to Highway 41

- Reviewed the projected intersection traffic volumes to determine the intersection layout requirements at 23 Avenue / 23 Street, 23 Avenue / 27 Street, and 23 Avenue / Highway 41.
- Reviewed the Town's Municipal Development Standards to identify the cross-section requirements both along 23 Avenue and at the three intersections on 23 Avenue.
- Identify if any intersection improvements are needed at the 23 Avenue/23 Steet intersection.

Corridor 3 - Highway 41 from 23 Avenue to Highway 14

- Carried out intersection type warrants (Alberta Transportation & Economic Corridor Warrant Procedures) to determine the design requirements for the 23 Avenue/Highway 41 intersection. The assessment was based on the warrants calculated for the long-term 20-Year horizon.
- Results of the intersection operation analysis on Highway 14 were also used to determine if the Right-In/Right-Out access on Highway 41 (at 17 Avenue) may be needed to provide relief to the intersections on Highway 14.

1.4 **REPORT ORGANIZATION**

This Report contains five sections:

Section 1 provides an **introduction of the Study**, with topics such as Study Area, Background, Study Objective, Study Methodology, as well as a summary of the Report Organization. The Section concludes with a list of the reference materials and reports reviewed in the process of undertaking this Study.

Section 2 provides an **overview of the study locations and issues identified**. The key focus is on the geometry and access issues on every intersection and access along Corridor 1 (Highway 14 through Wainwright). The Section concludes with a list for issues identified for both Corridor 2 (23 Avenue) and Corridor 3 (Highway 41).

Section 3 focuses on the short-term (10-Year) and longer-term (20-Year) operating conditions and improvement requirements for all key intersections along Highway 14 through Wainwright. The Section includes a collision analysis on collision data provided by the Province on Highway 14, as well as a detailed assessment on the truck traffic at key intersections along Highway 14. The truck traffic assessment provides the needed input for key considerations for intersection improvement needs and access management decisions (especially for confirming if WB-21 should be used as the design vehicle for the intersection, deciding related to access closure and other access treatments, as well as determining impacts on potential closure of connections to service roads on both sides of Highway 14).

Section 4 examines the intersection and access requirements of every intersection and access along Highway 14 through Wainwright. Besides the "Do-Nothing" Option, two key access management strategies are discussed – Two-Way-Left-Turn-Lane Option (TWLTL Option) and Service Road Option. The implication of the two-way-left-turn lane on the accommodation of various design vehicles are examined at all intersections and accesses with detailed Design Vehicle Swept Path analysis for both the existing and proposed TWLTL option. As for access treatment, the options discussed include "Do-Nothing" Option, Access Modification Option (e.g. Convert to Right-In/Right-Out), Access Consolidation Option, and Access Relocation Option, Alternative Access Option and Access Closure Option.

Section 5 provides the conclusions and recommendations for the improvements needed at each of the three corridors (Corridor 1 – Highway 14 through Wainwright; Corridor 2 – 23 Avenue from 23 Street to Highway 41; and Corridor 3 – Highway 41 from 23 Avenue to Highway 14).

1.5 REFERENCE MATERIALS / REPORT REVIEWED

The following references and reports were reviewed as part of the Project tasks:

- 1) *Hwy 14:14 4 km of Hwy 833 to Hwy 41* July 16, 2024 Meeting Minutes, prepared by *Morrison Hershfield*, for *Alberta Transportation & Economic Corridors (ATEC)*
- 2) *Highway 14 Access Management Study* 2013 Public Information Session Posters, prepared by *Associated Engineering*, for *Alberta Transportation*
- 3) "Highway 14 Due for Improvements" June 2013 News Article from The Star
- 4) Town of Wainwright Municipal Development Plan, Bylaw No 2021-14, Town of Wainwright
- 5) *Town of Wainwright Municipal Development Standards* current standards (as of 2024), *Town of Wainwright*
- 6) *Town of Wainwright Traffic Safety Plan* 2017 2019, and 2022 2024, prepared by *RCMP-Wainwright*
- 7) *Town of Wainwright Industrial Park Area Structure Plan* March 2, 2015, prepared by *Select Engineering* for the *Town of Wainwright*
- 8) **2021 Wainwright Regional Growth Study** November 2022, prepared by *ISL / Metro Economics / Nichols Applied Management* for the *Town of Wainwright*
- 9) Highway Geometric Design Guide Chapter D At-Grade Intersections (including Intersection Type Warrants for 2-Lane Highways), Chapter I, Access Management Guidelines, Chapter G -3R/4R Geometric Design Guidelines, October 2005, prepared by Alberta Infrastructure and Transportation.
- 10) *Geometric Design Guide for Canadian Roads* Chapter 8, Access, prepared by *Transportation Association of Canada (TAC)*
- 11) Access Management Manual Transportation Research Board (TRB) Chapter 2 Effects of Access Management, Chapter 11 Medians and Continuous Two-Way Left-Turn Lanes

- 12) *Safety Evaluation of Centre Two-Way Left-Turn Lanes on Two-Lane Roads*, FHWA-HRT-08-046, prepared in 2008 by *Federal Highway Administration (FHWA), US Department of Transportation*
- 13) *Safety and Operational Characteristics of Two-Way Left-Turn Lanes*, prepared in 2006 by *Minnesota DOT (MinDOT)* and *Local Road Research Board (LRRB)*
- 14) *Design Bulletin #68/2012, Roundabout Design Guideline on Provincial Highways*, Amended in 2016 by *Alberta Transportation*, supplemented by **Memorandum on Truck Accommodation at Multi-Lane Roundabouts**, prepared by *Ourston Roundabout Engineering* for *Alberta Transportation*
- 15) *Alberta Traffic Collision Statistics 2021*, prepared by Traffic Safety Section of *Alberta Transportation and Economic Corridors (ATEC)*
- 16) Highway Pavement Marking Guide, prepared in 2003 by Alberta Transportation
- 17) *Highway Safety Manual (HSM)*, Chapter 10, Predictive Method for Rural Two-Lane Two-Way Roads, Chapter 14 Intersections, and Chapter 16, Special Facilities and Geometric Situations (including TWLTL Treatments), prepared in 2010 by *American Association of State Highway and Transportation Officials (AASHTO)*
- 18) TMV and ATR Data from Alberta Transportation Traffic Counts Map 2023
- 19) Additional TMV Data gathered by Town of Wainwright (Hwy 14 & 15 St; 13 Ave & 27 St) 2022
- *20) "Stories of Albera: Wainwright Stampede"*, June 16, 2023 article on the *WhatsYourShare.ca* website
- 21) Historical Population Data from 2001 to 2023, Regional Dashboard.
- 22) *Trips and Parking Generation Rates for Land Uses in Small Towns in Alberta,* prepared in 2005 by *Bunt & Associates* for *Centre for Transportation Engineering & Planning (C-TEP)*

2. STUDY LOCATIONS AND ISSUES

2.1 CORRIDOR 1 - INTERSECTIONS AND ACCESSES ON HIGHWAY 14 FROM 1 STREET TO HIGHWAY 41

Exhibits 2.1.1 to 2.1.10 in **Appendix B** illustrate the existing highway intersection and access layout from 1 Street to Highway 41. Illustrated on the exhibits are the existing lane markings, access / intersection geometry and access / intersection numbers (bold red number in red circle). The table below summarizes the list of intersections and accesses and the adjacent landmarks accessed by the intersections / accesses. Issues identified by this Study as well as by the other transportation related studies are listed on an access by access and intersection by intersection basis.

Intersection / Access Number	Exhibti No
Access 1 - 1 St	Exhibit 2.1.1
Access 2 - Trail Contracting	Exhibit 2.1.1
Access 3 - 2 St	Exhibit 2.1.1
Access 4 - Petroleum Park	Exhibit 2.1.2
Access 5 - ESSO	Exhibt 2.1.3
Access 6 - 6 St	Exhibt 2.1.3
Access 7 - Bison Motel	Exhibt 2.1.3
Access 8 - Boston Pizza, Subway	Exhibt 2.1.3
Access 9 - MD of Wainwright	Exhibit 2.1.4
Access 10 - 9 St	Exhibit 2.1.4
Access 11 - KFC	Exhibit 2.1.5
Access 12 - 10A St	Exhibit 2.1.5
Access 13, 14 - Esthetic Studio / Pizza	Exhibit 2.1.5
Access 15, 16 - Esthetic Studio, Jeb's Joint	Exhibit 2.1.5
Access 17, 18 - Fas Gas / Vacant Lot (SWC)	Exhibit 2.1.5
Access 19 - 14 St	Exhibit 2.1.6
Access 20 - 15 St	Exhibit 2.1.6
Access 21 - EMCO Yard	Exhibit 2.1.6
Access 22 - Seed Cleaning Plant	Exhibit 2.1.6
Access 23 & 24 - 18 St	Exhibit 2.1.7
Access 25 & 26 - 23 St	Exhibit 2.1.8
Access 27 - 27 St (including 13 Ave/27 St)	Exhibit 2.1.9
Access 28 - Hwy 14 & Hwy 41	Exhibiit 2.1.10

2.1.1 EXHIBIT 2.1.1 - ACCESS 1, 2 & 3

Wainwright Traffic Study

- Issue identified in *Morrison Hershfield Meeting Minutes* – northeast corner prone to flooding

2.1.2 EXHIBIT 2.1.2 - ACCESS 4

- eastbound traffic (probably turn right from the wide shoulder)
 Westbound left turns into the Access need to turn from the only through lane for westbound traffic
- Only an I-BUS design vehicle can be accommodated (see Section 4)

2.1.3 EXHIBIT 2.1.3 - ACCESS 5, 6, 7, 8

- Access is very wide at 49m with a streetlight pole in the middle. The wide openings may be used by WB-21 to turn around on site (Not sure. To be verified)
 Semi-trailer trucks were found parked along the wide shoulder of the eastbound lanes of Highway 14
 Can accommodate a WB-21 design vehicle (See Section 4)
 Issue identified in *Morrison Hershfield Meeting Minutes* access too wide. Suggest
 - narrowing it down by either concrete barriers or delineators

Issues at Access 8 - Boston Pizza / Subway Access

- Eastbound right turns into the Access need to turn from the only through lane for eastbound traffic (probably turn right from the wide shoulder)
- Westbound left turns into the Access need to turn from the only through lane for westbound traffic
- Only an I-BUS design vehicle can be accommodated (see Section 4)

2.1.4 EXHIBIT 2.1.4 - ACCESS 9, 10

Issues at Access 9 - MD of Wainwright Office Access

- Eastbound right turns into the Access need to turn from the only through lane for eastbound traffic (probably turn right from the wide shoulder)
- Westbound left turns into the Access need to turn from the only through lane for westbound traffic
- Only an I-BUS design vehicle can be accommodated (see Section 4)

Issues at Access 10 - 9 Street

- Westbound right turns into 9 Street need to turn from the only through lane for westbound traffic (probably turn right from the wide shoulder)
- Eastbound left turns into 9 Street need to turn from the only through lane for eastbound traffic
- Only an I-BUS design vehicle can be accommodated (see Section 4)

Image: Construction of the second
Issues at Access 11 - KFC Access
 Westbound right turns into the Access need to turn from the only through lane for westbound traffic (probably turn right from the wide shoulder) Eastbound left turns into the Access need to turn from the only through lane for eastbound traffic
 Only an I-BUS design vehicle can be accommodated (see Section 4) Issue identified in the <i>Morrison Hershfield Meeting Minutes</i> – consider closing KFC access and provide alternative access through a shared service road concept (connecting to 9 Street)
Issues at Access 12 - 10A Street
 Eastbound left-turn/through/right-turn at 10A Street are made through a single eastbound lane. Right turns likely utilize the shoulder. Westbound left-turn/through/right-turn at 10A Street are made through a single eastbound lane. Right turns likely utilize the shoulder. Can accommodate a WB-21 design vehicle (See Section 4) Issue identified in the <i>Morrison Hershfield Meeting Minutes</i> – need to connect zebra crosswalk to existing sidewalks
Issues at Access 13 - Royal Pizza / Domino Pizza Access
 Very wide shoulder for eastbound direction. Eastbound traffic entering the Access probably utilizing the shoulder to make the right turn Westbound left turns cannot turn into the Access – would cross the solid yellow centre line.
 centre line Left turns exiting movement from the Access cannot be made - cannot cross solid yellow centre line
 Essentially a Right-In/Right-Out Access Only an I-BUS design vehicle can be accommodated (see Section 4)
Issues at Access 14 – Esthetics Studio West Access
 Westbound traffic entering the Access needs to turn from the only through lane for westbound traffic (probably utilizing the shoulder partially to make the right turn now)
 Eastbound left turn cannot turn into the Access - Cannot cross the solid yellow centre line

 Left-turn exiting movement from the Access cannot be made – cannot c 	
	ross the
solid yellow centre line	
- Essentially a Right-In/Right-Out Access	
- Can accommodate a I-BUS design vehicle in one direction only (only in	or out).
One of the Esthetic Studio accesses (Access 14 or Access 15) could be r	
or closed (See Section 4)	
Issues at Access 15 - Esthetics Studio East Access	
 This access is very close to Access 14 - centrelines of Access 14 and Acce 	ss 15 are
only 28m apart. Can remove or close either Access 14 or Access 15	
- Westbound traffic entering the Access needs to turn from the only throu	ugh lane
for westbound traffic	
- Eastbound left turns cannot turn into the Access - cannot cross the soli	d vellow
centre line	5
 Left turns exiting movement from the Access cannot be made – cannot c 	ross the
solid yellow centre line	
- Can only accommodate an I-BUS design vehicle one direction at a time (i	in or out
only). One of the two Esthetic Studio accesses (Access 14 ort Access 15) of	
removed (See Section 4)	
Issues at Access 16 - Jeb's Joint Access	
Issues at Access to - Jeb's John Access	
- This access is quite close to Access 13 - centrelines of Access 13 and Acce	ss 16 are
40m apart.	
- Eastbound traffic entering the Access needs to turn from the eastbound ri	ght turn
lane	
- Westbound left turns cannot turn into the Access – cannot cross the soli	d vellow
centre line	- 9
 Left turns exiting movement from the Access cannot be made – cannot c 	ross the
solid yellow centre line	
- Essentially a Right-In/Right-Out Access	
- Can only accommodate a I-BUS design vehicle one direction at a time (i	n or out
only) (see Section 4)	
 Issues identified in the Morrison Hershfield Meeting Minutes - (1) excess s 	shoulder
width in eastbound lane, (2) need better delineation of eastbound lanes	silouldei
Issues at Access 17 – Vacant Building Access (southwest corner of Highway 14 & 1	1 Stroot
intersection)	4 Street
- This access is quite close to Access 16 - centrelines of Access 16 and A	ccess 17
are 36m apart.	
- Eastbound traffic entering the Access needs turns from the eastbound ri	ght turn
lane	
 Westbound left-turn cannot turn into the Access – cannot cross the solid 	d vellow
centre line	
 Left turns exiting movement from the Access cannot be made - cannot c 	ross the
solid yellow centre line	
- Essentially a Right-In/Right-Out Access	
 Can accommodate an inbound WB-21 design vehicle, but not outbout 	ind (coo
-	
Section 4)	hould-"
- Issues identified in the <i>Morrison Hershfield Meeting Minutes</i> - (1) excess s	snoulder
width in eastbound lane, (2) need better delineation of eastbound lanes	
Issues at Access 18 - Fas Gas Plus Access	
- Westbound traffic entering the Access needs to turn from the only throu	ugh lane
for westbound traffic (probably utilizing the shoulder partially to make t	
turn now)	ingin

- Eastbound left-turn cannot turn into the Access cannot cross the solid yellow centre line
- Left turns exiting movement from the Access cannot be made cannot cross the solid yellow centre line
- Essentially a Right-In/Right-Out Access
- Can accommodate an outbound WB-21 design vehicle, but not inbound (see Section 4)

2.1.6 EXHIBIT 2.1.6 - ACCESS 19, 20, 21

Issues at Access 19 - 14 Street

- Outer separation (distance between the highway and the service road) is quite narrow (approximately 18m). WB-21 cannot make a U-Turn from Highway 14 westbound at 14 Street to North Service Road eastbound). Will need to widen northwest corner and northeast corner (see Section 4)
- Narrow north leg has limited capacity and is prone to traffic congestion
- Queues on north leg can block the service road intersection
- Intersection geometry is tight. Opposing left turns may be interlocking if both left turning vehicles are WB-21 (all four left turns)
- No left-turn bays at north and south legs. If the right turn bay at the south leg is converted to a shared through/right-turn lane, may result in longer queues in the curb lane at the south leg
- Traffic Signal lack of left-turn signal phases; signal timing deficiencies only 1 timing program resulting not responsive to traffic demand changes at different times of the day; inadequate clearance intervals
- 5 collisions over 5 years. 3 related to weekday peak periods, 4 related to Snow / Icy Road. 3 rearend collisions (see Section 3.2, Collision Analysis)
- No westbound right turn bay at this major intersection

Issues at Access 20 - 15 Street

Eastbound right turns into 15 Street are made through a single eastbound lane

- Westbound left turns cannot turn into 15 Street cannot cross solid yellow centre line
- Left-turn exiting movement from 15 Street cannot be made cannot cross solid yellow centre line
- Essentially a right-in/right-out access
- Can accommodate I-BUS design vehicle. Some overlap of turn paths for WB-21. (see Section 4)
- Issues identified in the *Morrison Hershfield Meeting Minutes* (1) left-turn crossing solid yellow line, (2) safety issue potential rearend collisions

Issues at Access 21 - EMCON Yard Access

- Eastbound right-turns in the Access are made through a single eastbound lane (probably utilizing the shoulder to make the right turn)
- Westbound left-turn cannot turn into the Access cannot cross solid yellow centre line
- Left turn exiting movement from the Access cannot be made cannot cross solid yellow centre line
- Essentially a right-in/right-out access
- Can accommodate WB-21 design vehicle (see Section 4)

2.1.7 EXHIBIT 2.1.7 - ACCESS 22, 23 (18 STREET NORTH), 24 (18 STREET SOUTH)

Issues at Access 22 - Wainwright Seed Cleaning Plant Access

- Eastbound right-turns into the Access are made through a single eastbound lane (probably utilizing the shoulder to make the right turn)
- Westbound left-turn cannot turn into the Access cannot cross solid yellow centre line

	Left-turn exiting movement from the Access cannot be made – cannot cross solid yellow centre line Essentially a right-in/right-out access Can accommodate WB-21 design vehicle. Although there is a slight overlap in swept paths, it is not likely to have WB-21 entering and exiting the Access at the same time (see Section 4)
Issues	at Access 23 – North Leg of 18 Street
-	Outer separation is too narrow. WB-21 cannot make a U-turn from Highway 14 westbound at 18 Street North to North Service Road eastbound. Westbound traffic entering 18 Street North need to turn from the only through lane for westbound traffic (probably utilizing the shoulder to make the right turn) Eastbound left-turn into 18 Street North needs to turn from the only through lane for eastbound traffic Offsetting North and South legs of 18 Street
-	Low volumes using 18 Street North. Closing of this access can be considered – especially when the volumes of semi-trailer trucks entering and exiting 18 Street North are very low (see Section 3.4) Issue identified in the <i>Morrison Hershfield Meeting Minutes</i> - offsetting north and
Issues	south legs of 18 Street at Access 24 - South Leg of 18 Street
-	Eastbound traffic entering 18 Street South need to turn from the only through lane for eastbound traffic (probably utilizing the shoulder to make the right turn) Westbound left-turn into 18 Street South needs to turn from the only through lane for westbound traffic
-	Offsetting north and south legs of 18 Street Very wide intersection – confusing for motorists – although no collisions between
-	2019 and 2023 Can accommodate WB-21 design vehicle but, due to the substantial width of the south leg, a median is desirable to separate the northbound and southbound traffic. If a median is added, it will be necessary to widen the southeast corner outer separation
-	May potentially consider a right turn bay (for eastbound traffic turning into 18 Street South)
-	Issues identified in the <i>Morrison Hershfield Meeting Minutes</i> - (1) offsetting north and south legs of 18 Street, (2) very wide south leg. May consider adding a pork chop island

2.1.8 EXHIBIT 2.1.8 - ACCESS 25 (23 STREET NORTH), 26 (23 STREET SOUTH)

Issues at Access 26 - South Leg of 23 Street

- Outer separation is too narrow (11m). A WB-21 design vehicle cannot make a U-turn from Highway 14 eastbound at 23 Street South to South Service Road westbound
- Eastbound traffic entering 23 Street South needs to turn from the only through lane for eastbound traffic (probably utilizing the shoulder to make the right turn now)
- Westbound left turns into 23 Street South need to turn from the only through lane for westbound traffic
- Intersection geometry is tight need to widen southeast corner to accommodate WB-21 design vehicle
- Intersection geometry is tight opposing left turns will be interlocking (both northbound/southbound left turns and eastbound/westbound left turns)
- Low volumes using 23 Street South. Closing of this access can be considered especially when the volumes of semi-trailer trucks entering and exiting 23 Street South are low (see Section 3.4)
- Issue identified in the *Morrison Hershfield Meeting Minutes* may consider closing the south leg of 23 Street. This is supported by the Town.

2.1.9 EXHIBIT 2.1.9 - ACCESS 27 (27 STREET)

Issues at Access 27 - 27 Street (including the service road intersection to the south)

- Congested south leg need northbound left-turn signal (flashing green arrow)
- Congested commercial site access across from 13 Avenue / Highway 14 South Service Road (Wainwright Crossing access)
- Traffic camera detection issue not pointing to the correct detection zones on the road (signal pole was hit, which might have affected the aiming of the traffic camera).

- Signal timing programming issues need to be addressed. (preliminary proposed timing changes have been prepared but will require further field investigation and detailed traffic operational analysis to confirm the scale of the timing changes needed)
 - Tight intersection tight opposing left turns in all four directions
- The close proximity of Highway 14 and the South Service Road (13 Avenue) resulting in complex operation in the southbound departure lane (from Highway 14 to 13 Avenue / South Service Road), and additional sightline issues making it difficult for eastbound traffic on 13 Avenue to enter 27 Street. Special right turn signal (green arrow) should be considered to control right turns from Highway 14 eastbound to 27 Street southbound in a safer manner by reducing potential conflicts due to the weaving traffic movements. The introduction of the right turn signal will require a longer eastbound right turn bay to provide more storage for the eastbound rightturn vehicles stopped in the right turn lane (while facing a red signal). Simulation for this signal control was checked but more detailed operational assessments will be needed to prepare the required detailed signal timing design and signal phasing assignment.
- Poor operation when Highway 14 wide loads are passing through the intersection pinch points. Need to stop 2-way traffic for a few hundred metres on Highway 14 to allow wide load to pass through
- 7 collisions over 5 years. 5 in 2021, with 2 weekday peak period collisions; 5 collisions related to left-turns; 1 collision occurred on a snowy/ice road day, 1 rearend collisions and 3 injury collisions. (see Section 3.2, Collision Analysis)
- Intersection can accommodate WB-21 design vehicle in all traffic movements between Highway 14, 27 Street and the South Service Road / 13 Avenue (see Section 4)
- Issues identified in the *Morrison Hershfield Meeting Minutes* (1) long centre medians along Highway 14 were hit by vehicles and removing the centre median may need to be considered; (2) very long east/west signal green phase; (3) major sightline issue for eastbound traffic exiting from 13 Avenue

2.2 CORRIDOR 2 – 23 AVENUE FROM 23 STREET TO HIGHWAY 41

Refer to **Exhibits 2.2.1 to 2.2.3** in **Appendix B**, which show the 23 Avenue corridor from 23 Street to Highway 41.

<u>Issues</u>

- 1. 23 Avenue will follow the same alignment as the existing 23 Avenue west of 23 Street.
- 2. Curb return radius at the southwest corner of the 23 Avenue / 23 Street intersection is undersized and may require widening.
- 3. 27 Street in the long term will extend to the north to intersect with 23 Avenue.
- 4. 23 Avenue will need to be constructed as an arterial road that can accommodate industrial park traffic. It is expected that 23 Avenue will have a posted speed limit of 60 km/h.
- 5. 23 Avenue will require a right-of-way of 24m and a pavement width of 11m. The north edge of the proposed right-of-way is located just south of the quarter-section line.
- 6. The cross-section of 23 Avenue will need to meet the requirements shown in the Town's Standard Drawing 3-02 for a 24.0 m Arterial ROW, as shown below:

2.3 CORRIDOR 3 - HIGHWAY 41 FROM 23 AVENUE TO HIGHWAY 14

Refer to **Exhibits 2.3.1 to 2.3.3** in **Appendix B**, which show the Highway 41 corridor from 23 Street to Highway 14.

<u>lssues</u>

- 1. There is an existing field access to a farm east of Highway 41, across from the proposed but located slightly north of the proposed 23 Avenue alignment. It is anticipated that the location of this field access may be adjusted to line up with the proposed 23 Avenue alignment at the west leg of the intersection.
- 2. The intersection type of the proposed 23 Avenue/Highway 41 intersection would be determined based on the projected long-term volumes (Year 20 volumes). Warrant charts in Chapter D of the Alberta Transportation and Economic Corridors Highway Geometric Design Guide will be used for this warrant analysis. (see Section 3.6)
- 3. It is expected that the posted speed limit of Highway 41 at 23 Avenue will remain at 100 km/h.
- 4. Lighting assessment has not been carried out. It is anticipated that a lighting assessment will be carried out when the intersection construction is being planned and designed.
- 5. It is assumed that the 23 Avenue extension and the 23 Avenue / Highway 41 intersection will be required when the industrial land is 50% developed (based on the results of intersection analysis in Section 3) which is further assumed to take place in 10 years.
- 6. The need for an extra access will be dependent on the operating conditions of the Highway 14 intersections at 23 Street and 27 Street. This will need to be determined when there are more developments in the industrial park. It is expected that having an additional access (as a right-in/right-out access) near 17 Avenue will provide relief in the level of traffic demands at the Highway 14 intersections resulting in less congested intersections on Highway 14.
- 7. The Highway 14 / Highway 41 intersection is currently stop-controlled for traffic on Highway 41. It is expected that further traffic control and / or geometry or lane

configuration changes may be needed as traffic volumes on Highway 14 and Highway 41 increase. The intersection operation assessment is provided in Section 3.

3. INTERSECTION ASSESSMENTS

3.1 METHODOLOGY

The methodology for the intersection assessments covered in this section is as follows:

- 1. Collision Analysis (Section 3.2)
 - a. Obtained collision records for Highway 14 through Wainwright (2019 to 2023).
 - b. Prepared collision diagrams and prepared summary tables.
- 2. Traffic Counts (Section 3.3)
 - a. Obtained 2023 Highway 14 traffic counts (100th highest hour AM and PM peak hour volumes).
 - i. At 1 Street, 9 St, 10A St, 14 Street, 18 Street, 23 Street, and 27 Street.
 - b. Supplemented with traffic counts collected in 2022:
 - i. Highway 14 at 15 Street, and Highway 41; and 13 Avenue & 27 Street.
- 3. Background Traffic (Section 3.3)
 - a. Estimated through traffic volumes on Highway 14 based on the above traffic counts.
 - b. Checked historical Highway 14 traffic volume and Wainwright population growth to identify growth factor to be applied to the background traffic volumes on Highway 14.
- 4. Truck Volumes (Section 3.4)
 - a. Examined the ATEC traffic counts in detail to determine the level of truck traffic at the key Highway 14 intersections.
- 5. Traffic Forecasts (Section 3.5)
 - a. Reviewed planning documents to obtain future population horizons in the long term.
 - b. Created traffic zones as well as future residential zones in Wainwright based on information from the planning documents.
 - c. Based on the traffic volumes gathered above, compare to the trip generation rates obtained from industrial parks elsewhere (trip generation rates from the Nisku Industrial Park and the Acheson Industrial Park were determined, trip generation rates observed from small towns in Alberta from a C-TEP study were also used).
 - d. Carried out trip generation analysis to determine short term (10 year, or 50% development of the industrial park land north of Highway 14 and west of Highway 41), and long term (20 year, or full development of the industrial park land).
 - e. Distributed future traffic volumes based on trip distribution parameters from traffic counts and between the various traffic zones (both internal and external zones).
 - f. Assigned traffic volumes for the short and long term horizons (10 year and 20 year).
- 6. Design Traffic Volumes (Section 3.5) Short Term (10 Year) and Long Term (20 Year).
- 7. Intersection Analysis (Section 3.6) the following analysis were carried out
 - a. <u>ATEC Intersection Type Warrant Analysis</u> carried out for the 23 Avenue / Highway 41 intersection (for Long Term horizon).
 - b. <u>Roundabout Capacity Analysis</u> carried out for the Highway 14 / 1 Street intersection (for Long Term horizon).
 - c. <u>TAC Traffic Signal Warrant Analysis</u> carried out for Highway 14 intersections at 1 St, 10A Street, 15 Street, 18 Street, 23 Street, and Highway 41; as well as for the 23 Avenue/Highway 41 intersection.
 - d. <u>Synchro and SimTraffic analyses</u> were carried out for all intersections along Highway 14 and Highway 41. SimTraffic was used to double check unsignalized intersections with a poor Synchro level of service to see if the simulated intersection operation was acceptable (i.e. no long queues and vehicles clearing the intersection in a timely manner).
 - e. In carrying out the <u>short-term intersection assessments</u>, the key goal was to provide the minimal improvements that would result in acceptable operations.
 - f. In carrying out the <u>long-term intersection assessments</u>, the key goal was to determine if the improvements implemented for the short-term would still result in acceptable operations in the long-term. This will determine if further improvements would be needed beyond the short-term horizon.

3.2 COLLISION ANALYSIS

The following exhibits illustrate the collision diagrams at the key intersections on Highway 14:

The collision records and the larger scale collision diagrams are provided in Appendix C.

The tables on the following page summarize the collision statistics by location for:

- Year
- Time / Date
- Collision Type

The statistics show that almost half of all collisions occurred during weekday peak periods – indicating that intersection safety decreases when the intersections are more congested. The statistics also show that more than half of all collisions involved a left-turning vehicle (rearend left-turning vehicles in front and left-turn cross path collisions). This shows that treatments to accommodate left turning movements will likely result in marked improvements in traffic safety.

Collision Statistics by Year and Collision Location (2019 to 2023)							
Year	Hwy 14 & 1 St	Hwy 14 & 6 St	Hwy14 & 14 St	Hwy 14 & 23 St	Hwy14 & 27 St	Hwy 14 & Hwy 41	Sum
2019	1	1	2	1	1	3	9
2020	'	1	2	2	1	1	5
2020	1	1	2	2	5	I	8
	1		1				0
2022			I				
2023							0
SUM	2	2	5	3	7	4	23

Collision Statistics by Weekday Peak Periods & Off Peak Periiods and Collision Location (2019 to 2023)								
Day/ Time of Collision=	Hwy14 & 1 St	Hwy 14 & 6 St	Hwy 14 & 14 St	Hwy 14 & 23 St	Hwy 14 & 27 St	Hwy 14 & Hwy 41	Sun	ו
Weekday, Peak Periods	2		3	2	2	2	11	48%
Weekend, Weekday Off Peaks		2	2	1	5	2	12	52%
SUM	2	2	5	3	7	4	23	100%
Related to SNOW / Icy Road		1	4	1	1		7	30%
Injury Collisions			1	1	3	1	6	26%
Animal			1				1	4%
Driver Sleepy						1	1	4%

Collision St	Collision Statistics by Collision Type and Collision Location (2019 to 2023)							
Pre-Crash Manoeuvre	Hwy 14 & 1 St	Hwy 14 & 6 St	Hwy 14 & 14 St	Hwy 14 & 23 St	Hwy 14 & 27 St	Hwy 14 & Hwy 41	Sun	ו
Rear-end Collision	1		3		1	1	6	26%
Rear-end Left-Turning Vehicle In Front	1	1		2	1	2	7	31%
Left Turn Cross Path		1			4		5	22%
Side Swipe (Left turn side swipe vehicle to the right)				1			1	4%
Run Off Road			1		1	1	3	13%
Right-Angle Collision			1				1	4%
SUM	2	2	5	3	7	4	23	100%

3.3 TRAFFIC COUNTS

2022 and 2023 traffic counts from the *ATEC website* and 2022 Town traffic count collection are provided in **Appendix D**.

The exhibit below shows the raw 2022 / 2023 traffic counts at key intersections on Highway 14. A larger scale exhibit is provided in **Appendix D**.

3.4 TRUCK VOLUMES

The exhibit below shows the peak hour truck volumes and percentage truck volumes at the various Highway 14 intersections. A larger scale exhibit is provided in **Appendix D**.

The exhibit below shows the daily truck volumes and percentage truck volumes at the various Highway 14 intersections. A larger scale exhibit is also provided in **Appendix D**.

3.5 TRAFFIC FORECASTS

The following exhibits show the 10-Year and 20-Year total Traffic volumes at the various Highway 14 intersections. Larger scale exhibits as well as for the background Traffic and development traffic in 10 Years and 20 Years are provided in **Appendix E**. Note that traffic volume adjustments were made to reflect the following changes at the 18 Street and 23 Street intersections:

- At 18 Street, the connection to the North Service Road would be closed.
- At 23 Street, the connection to the South Service Road would be closed.

Traffic volumes using the closed connections were re-assigned to use the adjacent Highway 14 intersections.

Final Report, January 2025

3.6 INTERSECTION ANALYSIS

3.6.1 INTERSECTION TYPE WARRANT

The *ATEC procedures* for checking warrants for intersection types for 2-lane highway intersections were carried out for the 20-Year horizon AM and PM volumes at the 23 Avenue & Highway 41 intersection. The resulting warrant charts are as follows:

The warrant analysis shows that a Type IV intersection is needed at the 23 Avenue & Highway 41 intersection. A typical Type IVb intersection suitable for the intersection is as follows:

3.6.2 TRAFFIC SIGNAL WARRANT

The following table summarizes the results of the *Transportation Association of Canada (TAC)* traffic signal warrant analysis carried out for the various key intersections for the existing horizon (2023 data), 10-Year horizon, and 20-Year horizon. The traffic signal warrant results are provided in **Appendix F**.

Traffic Signal Warrants							
Traffic Volumes	Hwy 14/1 St	Hwy 14/18 St	Hwy 14/23 St				
2023 Counts	22 pts	21 pts	39 pts				
10 Year	39 pts	44 pts	69 pts				
20 Year	123 pts	56 pts	108 pts				

The above traffic signal warrant analysis results indicate that a traffic signal is needed at 1 Street and 23 Street in the long-term (20-Year). However, the traffic signal warrant analysis is misleading due to the following factors:

<u>23 Street</u>

- Heavy trucks using the intersection will experience considerably high levels of delay due to the gap acceptance characteristics of trucks.

<u>1 Street</u>

- The traffic peaks sharply routinely at 1 Street, primarily due to the activities at CFB Wainwright
- Convoys regularly pass through the intersection resulting in considerable delays at the intersection.
- Delays and queues anticipated to be substantially longer during the Wainwright Stampede event.

The following traffic profiles show the peaks of the approach traffic at the east leg and south leg of the intersection:

Final Report, January 2025

3.6.3 ROUNDABOUT CAPACITY ANALYSIS

The *Highway Capacity Software (HCS)* was used to assess how the Highway 14 / 1 Street intersection would operate if a roundabout was constructed. Based on the result of a single-lane roundabout layout, the results of the roundabout operation at Year 20 are as follows. The HCS roundabout capacity analysis results are provided in **Appendix G**.

Roundabout Analysis (HCS) - for Highway 14 & 1 Street					
		Highway 14/1 St			
		(EB/WB/NB/SB LOS)			
20 Year Volumes	AM	B/A/A/A			
	PM	A/A/B/A			
20 Year Volumes + 20%	AM	C/B/A/A			
	PM	A/B/C/A			

The HCS analysis shows that a single lane roundabout would operate adequately in Year 20. Therefore, it can be concluded that a roundabout can be a viable solution to accommodate long term traffic growth. The following exhibit illustrates how a roundabout layout would look like at the Highway 14 & 1 Street intersection. The exhibit shows that the roundabout option would require considerable right-of-way. In addition, it will affect the access to the properties at the northeast and southeast quadrant considerably. The roundabout shown would have an inscribed circle diameter of approximately 55m, with a 7m truck apron and a 7m circulatory roadway. Such dimensions are needed as Highway 14 is a high load corridor and ATEC requires that a roundabout on a high load corridor has the ability to be upgraded to a 2-lane roundabout. A similar roundabout in Leduc County (at Highway 19 and Highway 60) costed approximately \$5 to \$6 million.

3.6.4 INTERSECTION CAPACITY ANALYSIS

Synchro analysis was carried out for the following intersections:

- Highway 14 & 1 Street (existing - as unsignalized intersection, 10-Year and beyond - as signalized intersection)

(as unsignalized intersection)

(as signalized intersection)

- Highway 14 & 10A Street (as unsignalized intersection)
- Highway 14 & 14 Street (as signalized intersection)
- Highway 14 & 15 Street (as unsignalized intersection)
- Highway 14 & 18 Street
 - Highway 14 & 23 Street (existing as unsignalized intersection, 10-Year and beyond as signalized intersection)
- Highway 14 & 27 Street

13 Avenue & 27 Street

- Highway 14 & Highway 41 (existing and 10-Year as unsignalized intersection, 20-Year as signalized intersection)
 - (as both unsignalized intersection and signalized intersection)
- 23 Avenue & Highway 41 (as unsignalized intersection)

Refer to the intersection lane configuration shown in Exhibits 5.1.a to 5.1.10, as well as Exhibit 5.3.3. (see Appendix H)

The Synchro run results were carried out based on the following intersection geometry and traffic control. These intersection geometries and traffic controls were determined by trying various layout and control combinations until the design with the optimal operations was determined.

- 1) <u>Highway 14 & 1 Street</u>
 - a. With signalization and the intersection lane configuration changes (with some widening), the intersection will operate adequately by Year 20
 - b. With left- and right-turn channelization on Highway 14
- 2) <u>Highway 14 & 10A Street</u>
 - a. The intersection will operate adequately without traffic signals
 - b. Highway 14 with TWLTL at the 10A Street intersection

- 3) Highway 14 & 14 Street
 - a. With the signal phasing and intersection lane configuration changes, the intersection will operate adequately by Year 20
 - b. With left- and right-turn channelization on Highway 14
- 4) Highway 14 & 15 Street
 - a. The intersection will operate adequately without traffic signals
 - b. Highway 14 with TWLTL at the 15 Street intersection
- 5) Highway 14 & 18 Street
 - a. Although Synchro runs showed failed operations in Year 20, traffic simulation runs demonstrated that the intersection will operate adequately without traffic signals in Year 20
 - b. With north leg of 18 Street closed
 - c. With left-turn channelization at 18 Street
- 6) <u>Highway 14 & 23 Street</u>
 - a. With signalization, the intersection will have acceptable operation by Year 20.
 - b. With south leg of 23 Street closed
 - c. With left- and right-turn channelization on Highway 14
- 7) <u>Highway 14 & 27 Street</u>
 - a. With signal phasing changes, the intersection will have acceptable operations. (1) left-turn phases for all 4 directions, (2) right-turn signal for eastbound right turn movement on Highway 14
 - b. In Year 20, with traffic signal at 13 Avenue & 27 Street
- 8) Highway 14 & Highway 41
 - a. Convert from 2-way stop to 4-way stop in Year 10.
 - b. Install traffic signal by Year 20, with left-turn channelization on all 4 legs
- 9) <u>13 Avenue & 27 Street</u> a. In Year 20, install traffic signal
- 10) <u>23 Avenue & Highway 41</u>
 - a. The intersection will operate adequately without traffic signals

The results of the Synchro analysis are summarized below. Synchro run results and LOS tables are provided in **Appendix I**.

		Hwy 14/1 St	Hwy 14/10A St	Hwy 14/14 St	Hwy 14/15 St	Hwy 14/18 St	Hwy 14/23 St	Hwy 14/27 St	13 Ave/27 St	Hwy 14/Hwy 41	23 Ave/Hwy 4
Synchro Analysis - 20	23 Co	unts					1000				
Synchro - Unsignalized	AM	C/D	C/B		D/B	D/B	E/B		B/E/C/B	B/C/C/B	n/a
	PM	C/C	C/B	(Selfarite)	C/C	D/B	E/B	The second second	B/E/C/C	B/D/C/B	n/a
Synchro - Signalized	AM			B/B/D/D	AND STREET	No. of the other	AN AND REAL PARTY.	C/C/C/D	(million)	Personal and	500.77 X24557
	PM	ANERSAL		D/C/C/B	CONSTRUCTION OF	Electron and	E BERRY	C/C/C/D	THE REAL PROPERTY OF	State State State	
Synchro Analysis - 20	23 Co	unts + Add	20% Volume	s	Non Ser				428	1200	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Synchro - Unsignalized	AM	C/D	C/B		В	D	E	Det Maller 18	C/B	A/A/C/B	n/a
	PM	D/C	C/C		C	E	F		E/D	A/A/C/B	n/a
Synchro - Signalized	AM	and the second second	Card States Contains	B/B/D/D	ansi perinte	Side and the state	NOR BRIDE	C/C/C/D	Statistics	1. 11.2550	1000 100 1000 1000 1000 1000 1000 1000
	PM			D/C/C/B	Madalanta	Bally College	Section Section Section	C/C/C/D	日本目的の目	No contractor	Contract Solice
Synchro Analysis - 20	33 (10	Year)		Sales in	1.	1.00	and the second	in Director		100000	
Synchro - Unsignalized	AM	3/12 - 2×27	B/8	1 Anna and	C/C	D/B	Sucre Patrice	1200 2012	D/B	C/D/C/B	A/A
	PM	And the second second	B/B	25 H BI 54	C/C	E/C	STATE STATE	Non Martin	F/C	E/C/C/B	A/A
Synchro - Signalized	AM	B/A/B/B		B/B/D/D	The Real Property in	and the second second	A/B/D	C/C/C/D	NE CELEPS ST	State of the state	ACTIVISED STOR
57 - 39 	PM	B/A/B/B		C/C/C/C	A ALE MARKED	MARK LINE OF	A/B/D	CICICID	Sec. 254214	511776-918-90	A STREET
Synchro Analysis - 20	43 (20	Year)	1.010.00	15,45,85		1		Col Table	100	1	
Synchro - Unsignalized	AM		C/C	\$367.100 Sept	C/C	E/C	0.12 Breathing	AND REAL PROPERTY.	D/D	They dis survive	B/B
	PM	VERIE STO	C/C	E and the	C/D	F/C	- ALASE STRAT	TRANSFERRATION	F/F	175-1525	B/B
Synchro - Signalized	AM	B/A/B/C	Barro Galage	C/C/C/C	CALIFORNIA STATE	15 19 2 4 A 1 4 4 4	C/B/D	C/C/D/D	Martin St., and	B/C/C/D	STATISTICS.
	PM	B/A/B/B	THE SHALL	C/C/C/D	THE PARTY OF	SHELDE TOOLA	A/B/D	C/C/D/D		B/C/C/D	1000

4. ACCESS MANAGEMENT ASSESSMENTS (HIGHWAY 14 FROM 1 STREET TO HIGHWAY 41)

4.1 DESIGN VEHICLES

In evaluating the accesses and intersection operations, the Vehicle Tracking program was used with the following design vehicles:

- WB-21: Tractor Semi-Trailers

- o for all key intersections where highway trucks are expected
- I-BUS: Intercity Buses or Coach Buses
 - o for minor intersections or accesses where highway trucks volumes are either not expected or very low.

4.2 ACCESS TREATMENT OPTIONS

There are a number of access treatment options that were considered at various locations along Highway 14. Depending on the location and site context, one of the following access treatment options would be deemed the most appropriate option for that particular access location.

- 1. Do-Nothing Option (i.e. Existing intersection layout and access treatment)
- 2. Access Modification (e.g. convert to right-in/right-out)
- 3. Access Consolidation (merge two accesses into one, or joint access)
- 4. Access Relocation / Alternative Access (Move access location)
- 5. Access Closure

4.3 CORRIDOR ACCESS MANAGEMENT OPTIONS

A number of access management options were considered for the Highway 14 corridor.

- 1. Do-Nothing Option / Existing Condition / Traditional Access Management Measures Raised or Painted Median
- 2. Two-Way-Left-Turn-Lane Option
- 3. Service Road Option

4.3.1 DO-NOTHING / EXISTING CONDITIONS / TRADITIONAL ACCESS MANAGEMENT MEASURES - RAISED OR PAINTED MEDIAN

These measures include:

- Centre median limiting all-directional accesses in mid-blocks
- Full left- and right-turn channelization
- Potential closure of accesses or conversion to right-in/right-out access if effective access management cannot be achieved
- Often combined with access modification, access consolidation, and access relocation

4.3.2 Two-WAY-LEFT-TURN LANE OPTION (TWLTL)

For corridors with multiple accesses and intersections, TWLTL is often an effective option to improve traffic safety and operational efficiency along a 2-lane corridor.

The following two tables (Table 8.1.2 and 8.1.3) were copied from Chapter 8, Access, of the *TAC Geometric Design Guide for Canadian Roads.* The tables show that TWLTL has a measurable advantage over an undivided road on the reduction in collision rates by total access points per kilometre (Table 8.1.2) and by ADT (average daily traffic volumes).

Total Access Points	Collisions Per	Million Vehicle Kilon	netres Per Year		Collisions Per Kilometre		
Per Kilometre ^A	Undivided	Two-Way Left	Raised Median	ADT			
		Turn Lane			Undivided	Two-Way Left Turn	
≤ 12	2.4	2.1	1.8	10,000	30	24	
12 - 24	4.5	3.7	3.2		1.1.1.m	27	
24 - 37	5.8	4.9	4.2	20,000	78	37	
> 37	6.6	5.7	5.1	30,000	118	57	
All	5.6	4.3	3.5	40,000	157	70	

ion Rates by ADT

ADT	Collisions Per Kilometre Per Year							
ADT -	Undivided	Two-Way Left Turn Lane	Raised Median					
10,000	30	24	20					
20,000	78	37	34					
30,000	118	57	48					
40,000	157	70	53					

The most common type of TWLTL are 3-lane and 5-lane TWLTLs. For Highway 14 through Wainwright, the 3-lane TWLTL is the candidate for access management improvements. The typical layout of a 3lane TWLTL is as follows:

The crash modification factor (CMF) vs access points per km for TWLTLs is illustrated in Figure 8.6.2 in the TAC document:

Figure 8.6.2: Collision Modification Factor vs. Access Points per km for TWLTLs

4.3.3 SERVICE ROAD OPTION

Figure 8.7.3 and 8.7.5 of the *TAC Geometric Design Guide For Canadian Roads* illustrate the concept of service road for crossroads with \leq 200 vpd and > 5000 vpd.

The biggest challenges of the service road concept are right-of-way requirements and operational problems at service road intersections with cross streets. Along Highway 14, the following cross-streets currently have less than 2000 vpd traffic volumes – 10A Street (510 vpd), north leg of 14 Street (1,730 vpd), and 15 Street (810 vpd). For these level of cross street traffic volumes, a 24m outer separation will be needed. However, if the service road intersection is required to accommodate WB-21 design vehicle without taking up the entire pavement area of the service road approach, wider outer separation of at least 30m will be needed.

Figure 8.7.3: Two-Way Service Road / Cross Road Intersection Treatment, Cross Road Volumes ≤ 2000 veh/d, Unsignalized Intersection

For cross-streets that currently have more than 5000 vpd traffic volumes, a traffic signal may be needed at the crossroad / service road intersection. In these cases, much larger outer separation will

be needed. The dimension shown in the exhibit above is 45m minimum. However, depending on the required turn bay storage length, longer separation may be needed.

Figure 8.7.5: Two-Way Service Road / Cross Road Intersection Treatment, Cross Road Volumes > 5000 veh/d, Signalized Intersection

The following two exhibits show a potential service road option along 2 segments of the Highway 14 corridor through Wainwright.

Segment 1 - Between Esso Access and 9 Street

The exhibit shows that the service road concept will have considerable impacts on the sites south of Highway 14 at the bulbing at both ends – at the Esso site and at Wallace Park.

Segment 2 - Between 10A Street and 14 Street

This option is essentially a shared access / access consolidation option. The design seems constrained and the resulting outer separation is very narrow – probably cannot accommodate an I-BUS design vehicle.

The service road option is ruled out due to its large right-of-way requirements. Further work was done to explore the viability of the TWLTL concept in the next section.

4.4 DETAILED ASSESSMENT OF THE TWLTL OPTION

Multiple swept path analyses were carried out at both the existing 2-lane undivided Highway 14 option and the 3-lane TWLTL option. The 2-lane undivided highway has wider shoulders while the 3-lane TWLTL option has a 1.5m shoulder.

The detailed swept path analysis results are provided in **Appendix J.** The table below summarizes the result of the swept path analysis, showing which design vehicle can be accommodated at the various accesses and intersections. The swept path analysis also help identify the intersection widening needed to accommodate the swept paths of the design vehicles.

	Exi	sting	TWLTL / Future		
Intersection / Access	WB-21	I-BUS	WB-21	I-BUS	
Access 1 - 1 St	WB-21		WB-21		
Access 2 - Trail Contracting		I-BUS		I-BUS	
Access 3 - 2 St	WB-21		WB-21		
Access 4 - Petroleum Park		I-BUS		I-BUS	
Access 5 - ESSO	WB-21	I-BUS	WB-21	I-BUS	
Access 6 - 6 St		I-BUS		I-BUS	
Access 7 - Bison Motel	? WB-21		? WB-21		
Access 8 - Boston Pizza, Subway		I-BUS		I-BUS	
Access 9 - MD of Wainwright		I-BUS		I-BUS	
Access 10 - 9 St		I-BUS		I-BUS	
Access 11 - KFC		I-BUS		I-BUS	
Access 12 - 10A St	WB-21	I-BUS	WB-21	I-BUS	
Access 13, 14 - Esthetic Studio / Pizza		? I-BUS		? I-BUS	
Access 15, 16 - Esthetic Studio, Jeb's Joint		? I-BUS		? I-BUS	
Access 17, 18 - Fas Gas / Vacant Lot (SWC)	WB-21		WB-21		
Access 19 - 14 St	WB-21		WB-21		
Access 20 - 15 St		I-BUS		I-BUS	
Access 21 - EMCO Yard	WB-21		WB-21		
Access 22 - Seed Cleaning Plant	WB-21		WB-21		
Access 24 - 18 St	WB-21		WB-21		
Access 26 - 23 St	WB-21		WB-21		
Access 27 - 27 St (including 13 Ave/27 St)	WB-21		WB-21		
Access 28 - Hwy 14 & Hwy 41	WB-21		WB-21		
23 Ave & 23 St	n/a		WB-21		
23 Ave & Hwy 41	n/a		WB-21		
19 Ave & Hwy 41	n/a		WB-21		

A detailed discussion on the design vehicle swept path check are provided below and bigger scale tables are included in **Appendix J**.

For each access or intersection the results of swept path check for the existing intersection layout are presented for either the WB-21 or the I-BUS design vehicles. Remarks are provided outlining why swept paths presented work or do not work. Based on this assessment, the design vehicle at each access or intersection are identified.

Similar swept path assessments were performed for the same accesses and intersections based on a TWLTL layout on Highway 14. Again, detailed remarks are provided outlining why the swept paths presented work or do not work. In addition, comments are provided on the potential widening needed so that the design vehicle swept paths can be accommodated.

Des	sign Vehicle	Swept P	ath Chec	k - Accesses / Intersections along H	lighway [•]	14 throug	Jh Wainwright
Site	Access /	Design Ve	h - Existing	Remarks	Design Ve	h - TWLTL	Remarks
JILE	Intersection	IN	OUT	Remarks	IN	OUT	Remarks
1	1 St (N&S)	WB-21	WB-21	Exhibit EX 1.1, 1.2, 1.3 - The following location is tight for WB-21 Design Vehicle: Exh EX 1.1 - N Leg too narrow, need to widen N Leg; Exh EX 1.3 - May need to widen NEC.	WB-21	WB-21	Exhibit TWLTL 1.1, 1.2, 1.3 - The following location is tight for WB-21 Design Vehicle: Exh TWLTL 1.1 - N Leg too narrow, need to widen N Leg; Exh TWLTL 1.2 - May need Stopboxes; Exh TWLTL 1.3 - May need to widen NEC.
2	Access (s) to Trail General Contracting	I-BUS	I-BUS	Exhibit EX 2.1, 2.2 - Access can accommodate I-BUS Design Vehicle	I-BUS	I-BUS	Exhibit TWLTL 2.1, 2.2 - Access can accommodate I-BUS Design Vehicle
3	2 St (N)	WB-21	WB-21	Exhibit EX 3.1, 3.2 - The following location is tight for WB-21 Design Vehicle: Exh EX 3.1 - tight for concurrent EBLT/SBRT, may need to widen NEC; Exh EX 3.2 - tight for concurrent WBRT/SBLT; may need to widen NEC.	WB-21	WB-21	Exhibit TWLTL 2.1, 2.2 - The following location is tight for WB-21 Design Vehicle: Exh TWLTL 3.1 - tight for concurrent EBLT/SBRT, may need to widen NWC; Exh TWLTL 3.2 - tight for concurrent WBRT/SBLT; may need to widen NEC.
4	Access (S) to Petroleum Park	I-BUS	I-BUS	Exhibit EX 4.1, 4.2 - Access can accommodate I-BUS Design Vehicle. Some overlaps in opposing swept paths within the site - acceptable as occurrences expected to be infrequent.	I-BUS	I-BUS	Exhibit TWLTL 4.1, 4.2 - Access can accommodate I-BUS Design Vehicle. Some overlaps in opposing swept paths within the site - acceptable as occurrences expected to be infrequent.
5	Access (S) to ESSO	WB-21	WB-21 (RT out to Hwy 14 via Site E Access @14 St)	Exhibit EX 5.1, 5.2 - Access can accommodate WB-21 Design Vehicle, except for NBRT exiting the site at an acute angle - too tight even for I-BUS. I-BUS making this exiting movement would need to take up a large part of the site access to make the wide turn	WB-21	WB-21 (RT out to Hwy 14 via Site E Access @14 St)	5 5

Des	sign Vehicle	Swept Pa	ath Chec	k - Accesses / Intersections along F	lighway	14 throug	h Wainwright
Site	Access /		h - Existing			h - TWLTL	
Site	Intersection	IN	OUT	Remarks	IN	OUT	Remarks
6	6 St (S)	I-BUS	I-BUS	Exhibit EX 6.1, 6.2, 6.3 - Intersection can accommodate I-BUS Design Vehicle. WB-21 can enter ESSO (at SWC) from the east via 6 St (EBLT, Zig-Zag) and exit ESSO to the east also via 6 St (NBRT, Zig-Zag)	I-BUS	I-BUS	Exhibit TWLTL 6.1, 6.3 - Intersection can accommodate I-BUS Design Vehicle. WB-21 can enter ESSO (at SWC) from the east via 6 St (EBLT, Zig-Zag) and exit ESSO to the east also via 6 St (NBRT, Zig-Zag)
7	Access to Bison Motel	I-BUS	I-BUS	Did not prepare exhibit or swept path check (Should consider narrowing down site access which currently consists of a 24m west access and a 15m east access. Desirable to narrow down the west access to around 12m. Closure of the east access should be considered.	I-BUS	I-BUS	Did not prepare exhibit or swept path check (Should consider narrowing down site access which currently consists of a 24m west access and a 15m east access. Desirable to narrow down the west access to around 12m. Closure of the east access should be considered.
8	Access (S) to Boston Pizza / Subway	I-BUS	I-BUS	Exhibit EX 8.1, 8.2 - Access can accommodate I-BUS Design Vehicle	I-BUS	I-BUS	Exhibit TWLTL 8.1, 8.2 - Access can accommodate I-BUS Design Vehicle
9	Access (S) to MD of Wainwright	I-BUS	I-BUS	Exhibit EX 9.1, 9.2 - Access can accommodate I-BUS Design Vehicle	I-BUS	I-BUS	Exhibit TWLTL 9.1, 9.2 - Access can accommodate I-BUS Design Vehicle
10	9 St (N)	I-BUS	I-BUS	Exhibit EX 10.1, 10.2 - Intersection can accommodate I-BUS Design Vehicle	I-BUS	I-BUS	Exhibit TWLTL 10.1, 10.2 - Intersection can accommodate I-BUS Design Vehicle
11	Access (N) to KFC	I-BUS	I-BUS	Exhibit EX 11.1, 11.2 - Access can accommodate I-BUS Design Vehicle	I-BUS	I-BUS	Exhibit TWLTL 11.1, 11.2 - Access can accommodate I-BUS Design Vehicle
12	10a St (N/S)	I-BUS	I-BUS	Exhibit EX 12.4, 12.5, 12.6 - Intersection can accommodate I-BUS Design Vehicle. Exhibit EX 12.1, 12.2, 12.3 - need to increase corner radii (all 4 corners) if want to accommodate WB-21, or WB-21 will need to make wide right turns, taking up most of 10a St	I-BUS	I-BUS	Exhibit TWLTL 12.4, 12.5, 12.6 - Intersection can accommodate I-BUS Design Vehicle. Exhibit TWLTL 12.1, 12.2, 12.3 - need to increase corner radii (all 4 corners) if want to accommodate WB-21, or WB-21 will need to make wide right turns, taking up most of 10a St

Des	sign Vehicle	Swept Pa	ath Chec	k - Accesses / Intersections along H	lighway î	14 throug	h Wainwright
Site	Access /	Design Vel	n - Existing	Remarks	Design Ve	h - TWLTL	Remarks
Sile	Intersection	IN	OUT	Remarks	IN	OUT	Remarks
13	Access (S) to	I-BUS	I-BUS	Did not prepare exhibit or swept path check	I-BUS	I-BUS	Did not prepare exhibit or swept path check
	Royal Pizza / Domino						
14	West Access	1-direction	1-direction	Did not prepare exhibit or swept path check	1-direction	1-direction	Did not prepare exhibit or swept path check
	(N) to	for I-BUS	for I-BUS	(Consider closing either West or East		for I-BUS	(Consider closing either West or East
	Esthetics			Access)			Access)
15	East Access		1-direction	Did not prepare exhibit or swept path check		1-direction	
	(N) to Esthetics	for I-BUS	for I-BUS	(Consider closing either West or East Access)	for I-BUS	for I-BUS	(Consider closing either West or East Access)
16	Access (S) to	1_direction	1-direction	· ·	1_direction	1-direction	
10	Jebb's Joint	for I-BUS	for I-BUS	Did not prepare exhibit of swept pair check	for I-BUS		Did not prepare exhibit of swept pair check
17	Access (S) to	WB-21	WB-21	Exhibit EX 17.1 - WB-21 can access Site	n/a	n/a	n/a
	Husky	(via Hwy	(via 14 St)	from Hwy 14 West either through the North	n, a		
	Vacant Site	14 or 14	. ,	Access (zig-zag) or the East Access (U-Turn			
	(Right-In/Right-	St)		from Hwy 14, via 14 St). Can exit from Site			
	Out Proposed)			to Hwy 14 by making a right turn from the			
				North Access, or via the East Access on 14 St and then left or right at 14 St			
18	Access (N) to	WB-21	WB-21	Exhibit EX 18.1, 18.2 - Exhibit 18.1 - WB-	n/a	n/a	n/a
10	Fas Gas Plus	VVD-Z I	VVD-2 1	21 can exit FAS GAS to Hwy 14 West	11/a	11/4	1Va
	(Right-In/Right			through the South Access. Exhibit EX 18.2			
	Out Proposed)			WB-21 can enter FAS GAS from Hwy 14 E			
				either through the South Access (U-Turn) or			
				the East Access (Zig-Zag from Hwy 14, via			
				14 St).			

Des	sign Vehicle	Swept Pa	ath Chec	k - Accesses / Intersections along H	lighway [•]	14 throug	h Wainwright
Site	Access /	Design Vel	n - Existing	Remarks	Design Ve	h - TWLTL	Remarks
onte	Intersection	IN	OUT		IN	OUT	itemarks
19	14 St (N/S)	WB-21	WB-21	Exhibit B1X, B2X, B3X, B4X, B5X. Exhibit B1X - Need to widen N Leg to provide 2 SB lanes; Assign LT lane at N & S Legs; Move Stopline back at all 4 Legs. Exhibit B4X & B5X - Create WBRT Lane. Widen East Outer Separation (NEC) to accommodate Zig-Zag from Hwy 14 EB to NE Service Rd EB, and may need to widen north edge of NE Service Rd to accommodate U-Turn from Hy 14 WB-to-SE Service Rd EB.	WB-21	WB-21	n/a
20	15 St (S)	I-BUS	I-BUS	Exhibit EX 20.1, 20.2 - Intersection can accommodate I-BUS Design Vehicle. It is too narrow for WB-21. WB-21 will need to make a wide turn for making either a right or left turn into 15 St, taking up most of the width of 15 St.	I-BUS	I-BUS	Exhibit TWLTL 20.1, 20.2 - Intersection can accommodate I-BUS Design Vehicle. It is too narrow for WB-21. WB-21 will need to make a wide turn for making either a right or left turn into 15 St, taking up most of the width of 15 St.
21	Maintenance	for WB-21		accommodate one-directional travel of a WB- 21 Design Vehicle. Acceptable as it is unlikely to have two WB-21 trucks entering and exiting at the same time		1-direction for WB-21	Exhibit TWLTL 21.1, 21.2 - Access can accommodate one-directional travel of a WB- 21 Design Vehicle. Acceptable as it is unlikely to have two WB-21 trucks entering and exiting at the same time
22	Access (S) to Wainwright Seed Cleaning Plant		1-direction for WB-21			1-direction for WB-21	Exhibit TWLTL 22.1, 22.2 - Access can accommodate one-directional travel of a WB- 21 Design Vehicle. Acceptable as it is unlikely to have two WB-21 trucks entering and exiting at the same time
23	18 St (N) (Closure proposed)	n/a	n/a	n/a	n/a	n/a	n/a

Site	Access / Intersection	To/Fro	m 23 St	Remarks	To/From North Service Rd		Remarks
24	18 St (S)	WB-21	WB-21	Exhibit EX 24.1, 24.2 - Intersection can accommodate WB-21 Design Vehicle	n/a	n/a	Exhibit TWLTL 24.1, 24.2 - Intersection can accommodate WB-21 Design Vehicle
25	23 St (N)	WB-21	WB-21	Turn Path ALC-A1, A2, C1-X. Exh ALC- A2 ALC-C1-X - Need to widen NWC and East Outer Separation (NEC).	n/a	n/a	Turn Path ALC-B1, B4-X, C5-X, D3-X, D4- X. Exh ALC-B1 & ALC-D3X - Need to widen East Outer Separation (NEC). Exh ALC-B4-X - Need to widen East Outer Separation and NWC. Exh ALC-C5X - Need to widen West Outer Separation. Exh ALC-D4X - Need to widen East & West
26	23 St (S) - (Closure Proposed)	n/a	n/a	n/a	n/a	n/a	n/a

Wainwright Traffic Study

Final Report, January 2025

Site	Access /	To/Fro	m 27 St	Remarks	To/Fro	m North	Remarks
Site	Intersection				Service R	bad and 13	
27	27 St (N&S)	WB-21	WB-21	Exhibit 1, 2. Exhibit 1 - Shows Hwy 14 WBRT swept path will clear the proposed centre median at the South Leg. Also shows adequate separation between the EBLT and WBLT swept paths. Exhibit 2 - shows 27 St NBLT swept path can clear the Centre Median north median nose. Also shows adequate separation between the NBLT and SBLT swept paths.	n/a	n/a	Exhibit 1, 2, 3, 4, 5. Exhibit 1 - shows swept path of LT trucks from 27 St to NW Service Road. Also shows truck making a U- Turn from the E Leg of 13 Ave to Hwy 14 EB, and truck making a Right Turn from 27 St to the W Leg of 13 Ave. Exhibit 2 - shows concurrent NBLT and EBRT of trucks turning at the 27 St/NW Service Road junction. Also shows Zig-Zag turns of truck from Hwy 14 EB to 13 Ave EB. Also shows trucks turning right from 13 Ave (W) to 27 St (S). Exhibt 3 - shows the following U- Turns: EB from NW Service Road U-Turn to WN on Hwy 14; EB from Hwy 14 U-Turn to WB on 13 Ave (WB); EB on 13 Ave (W) U- Turn to Hwy 14 WB. Exhibit 4 - shows U- Turn: Hwy 14 EB U-Turn to EB on 13 Ave (E). Also shows opposing left turns at the 13 Ave/27 St junction. Exhibit 5 - shows Zig- Zag movement from NW Service Road Zig- Zag to Hwy 14 EB. Also shows Zig-Zag to Hwy 14 EB. Aksi shows opposing EBLT and WBLT for trucks turning at 13 Ave/27 St junction, as well as concurrent WBLT from 13 Ave (E) to 27 St (S), and NBRT from 27 St (S) to 13 Ave (E)

4.5 ACCESS MANAGEMENT OPTIONS SELECTED

Based on the results of the intersection analysis in Section 3 and the access analysis in Section 4.4, the following access management recommendations are provided at the following segments of Highway 14 through Wainwright. Refer to Exhibit 5.1.1 to 5.1.10 in **Appendix H** for details.

4.5.1 INTERSECTION WITH NARROW MEDIAN/ TRADITIONAL LEFT & RIGHT TURN CHANNELIZATION

- o 1 Street intersection (Access 1)
- o 14 Street intersection (Access 19)
- o 18 Street intersection (Access 24)
- o 23 Street intersection (Access 25)
- o 27 Street intersection (Access 27)

4.5.2 INTERSECTION WITH RAISED MEDIAN

o South leg of Highway 14/27 Street intersection

4.5.3 ACCESS CLOSURE / ACCESS CONSOLIDATION

o Access 14 or 15 - Esthetic Studio Access to be consolidated or one access closed

4.5.4 CONVERT ACCESS TO RIGHT-IN/RIGHT-OUT

- o Access 17 KFC Access
- o Access 18 Access to Hwy 14/14 St SWC Vacant Lot

4.5.5 NARROW DOWN ACCESS

- o Access 7 Bison Motel Access
- o Access 13 Royal Pizza / Domino Pizza Access

4.5.6 INTERSECTION WIDENING

- o Access 1 1 Street
- Access 12 10A Street
 Access 19 14 Street
- Access 15 14 Street
 Access 24 18 Street
 Access 25 23 Street
 Access 27 27 Street

4.5.7 HIGHWAY 14 SEGMENT WITH TWLTL

- o From Access 2 (Trail Contracting) to Access 4 (Petroleum Park access)
- o From Access 4 (Petroleum Park Access) to 100m west of Access 19 (14 Street)
- o From Access 20 (15 Street) to Access 24 (18 Street)

5. CONCLUSIONS AND RECOMMENDATIONS

5.1 CONCLUSIONS & RECOMMENDATIONS - CORRIDOR 1

The following are the reduced size exhibits for the recommendations along Corridor 1. The larger-scale exhibits are provided in **Appendix H**.

Exhibit 5.1.1 – Access 1, 2, 3

Exhibit 5.1.2 - Access 4

Exhibit 5.1.3 - Access 5, 6, 7, 8

Exhibit 5.1.4 - Access 8, 9, 10

Exhibit 5.1.6 - Access 9, 20, 21, 22

Exhibit 5.1.7 - Access 24

Exhibit 5.1.8 - Access 25

Exhibit 5.1.9 – Access 27

Exhibit 5.1.10 – Access 28

5.2 CONCLUSIONS & RECOMMENDATIONS - CORRIDOR 2

The following are the reduced size exhibits for the recommendations along Corridor 2. The larger scale exhibits are provided in **Appendix H**.

Exhibit 5.2.1 - 23 Ave & 23 St Intersection

Exhibit 5.2.27 - 23 Ave & 27 St Intersection

5.3 CONCLUSIONS & RECOMMENDATIONS - CORRIDOR 3

The following are the reduced size exhibits for the recommendations along Corridor 3. The larger scale exhibits are provided in **Appendix H**.

Exhibit 5.31 - Highway 14 & Highway 41

Exhibit 5.32 -117 Avenue & Highway 41

Exhibit 5.3.3 - Highway 14 & Highway 41

5.4 CONCLUSIONS & RECOMMENDATIONS – ACCESSES AND INTERSECTIONS

In this section, side-by-side comparisons are provided for each intersection / access along Highway 14, as well as a couple of intersections along 23 Avenue, showing the difference between the existing and proposed layouts.

Intersection improvements at Highway 14 & 1 Street (Access 1) include:

- 1. Install traffic signal with advance warning flashers facing eastbound traffic
- 2. Add short northbound right-turn taper at south leg
- 3. Add westbound right-turn lane at east leg
- 4. Add eastbound right-turn lane at west leg
- 5. Add 0.5m-wide painted centre median on east and west legs
- 6. Widen northwest corner to provide flaring at the north leg to accommodate two southbound lanes

Intersection improvements at Highway 14 & Bison Motel Access (Access 7) include:

1. Narrow down the wide access. Perhaps close either the east half or west half of the current access.

Wainwright Traffic Study

Wainwright Traffic Study

Final Report, January 2025

Intersection improvements at Highway 14 & Esthetic Studio Access (Access 14) include:

1. Close off either Access 13 or Access 14

Invistec Consulting Ltd.

Intersection improvements at Highway 14 & KFC / Vacant Lot Access (Access 17 & 18) include:

- 1. Convert both accesses into right-in/right-out accesses
- 2. Start TWLTL from west of these two accesses and extend to the west
- 3. Provide left-turn lane + through lane + right-turn lane from these two accesses to 14 Street
- 4. Provide a 0.5m-wide double yellow painted centre median

Intersection improvements at Highway 14 & 14 Street (Access 19) include:

- 1. Add westbound tight-turn bay at east leg
- 2. Widen northwest corner to create room for two southbound lanes
- 3. Signal pole at northwest corner may need to be relocated or require protection (e.g. by concrete barrier) due to the widening
- 4. Re-designate lanes at the south leg
- 5. Move back stop lines to provide more room for left-turning vehicles (all four legs)
- 6. Add 0.5m-wide painted centre median on east and west legs
- 7. Modify signal phasing and implement new signal timing plans
- 8. Additional widening at the north edge of the North Service Road so that the swept path of a WB-21 design vehicle making a wide U-turn can be accommodated (westbound Highway 14 traffic making a U-turn to go eastbound on North Service Road
Wainwright Traffic Study

Final Report, January 2025

Intersection improvements at Highway 14 & 18 Street (Access 23 & 24) include:

- 1. Close off connection to the North Service Road at the north leg of 18 Street
- 2. Add westbound left-turn bay at the east leg with a 0.5m-wide painted centre median
- 3. Add 1.5m-wide painted centre median at the south leg (or a 1.0m-wide raised median)
- 4. Widen the southeast corner of the intersection to provide room for WB-21 swept paths

Intersection improvements at Highway 14 & 23 Street (Access 25 & 26) include:

- 1. Close off connection to the South Service Road (13 Avenue) at the south leg of 23 Street
- 2. Install traffic signal
- 3. Add westbound right-turn bay at the East Leg
- 4. Add eastbound left-turn bay at the West Leg with a 0.5m wide painted centre median
- 5. Bulbing at outer separation (northeast & potentially northwest corners to facilitate truck turning)
- 6. May consider shifting the centreline of Highway 14 slightly to the south within the vicinity of the 23 Street intersection (from east of 18 Street to west of 27 Street) so that WB-21 design vehicle can have enough room for U-turns between the North Service Road and the Highway 14 westbound lane

Existing Layout - 27: Hwy 14 & 27 St / 13 Ave & 27 St Proposed Layout - 27: Hwy 14 & 27 St / 13 Ave & 27 St

Intersection improvements at Highway 14 & 27 Street (Access 27) include:

- 1. Add northbound left-turn green arrow signal
- 2. Extend eastbound right-turn bay at west leg
- 3. Construct raised centre median at the south leg (approximately 1m-wide)
- 4. Provide two lanes southbound from Highway 14 to 13 Avenue (with 20cm-wide 3m:3m line/gap dashed white)
- 5. Add signal for Highway 14 eastbound right-turn traffic (RED-AMBER-GREEN-GREEN-ARROW). May need to create new camera detection zone in the eastbound right turn bay (detailed signal design including logic programming to be prepared in the detailed design stage)
- 6. Trim traffic island at northwest and southeast corners to create a 7m passageway for wide loads on Highway 14 (e.g. such as farm equipment, single wide / double wide prefab homes)
- 7. Modify signal phasing and implement new signal timing plans

Intersection improvements at Highway 14 & Highway 41 (Access 28) include:

- 1. Potentially convert to 4-way stop when intersection operation deteriorates with excessive delays to Highway 41 traffic (as traffic volumes increase at this intersection)
- 2. In the long-term, signalization of this intersection will eventually be needed. At that time, lane configurations at all four legs will also need to be modified (to provide left-turn lanes as well as potentially add right-turn bays)

Intersection improvements at 23 Avenue & 23 Street include:

1. Increase the curb return radius at the southwest corner to accommodate swept path of WB-21 design vehicle

Construct new intersection at 23 Avenue & 27 Street, including:

- 1. Construct a new T-intersection to connect to the north extension of 27 Street.
- 2. Right-of-way of 27 Street to match the existing 27 Street right-of-way further south
- 3. Curb return radii to be 15m to accommodate WB-21 Swept paths

Wainwright Traffic Study

Final Report, January 2025

Construct new Type IVb Intersection at 23 Avenue & Highway 41, including:

- 1. Traffic signal not required
- 2. Lighting requirement to be determined at planning and design stage.
- 3. Re-align field access east of Highway 41
- 4. Timeline for this intersection is between 10 and 20 years, or when the 23 Street or 27 Street intersections are approaching capacity (i.e. long delay and queues)

Construct new right-in/right-out (RI/RO) Access at 17 Avenue & Highway 41, including:

- 1. Traffic signal not required
- 2. Timeline for this RI/RO Access is between 10 and 20 years, or when the 23 Street or 27 Street intersections are approaching capacity (i.e. long delay and queues)

5.5 ADDITIONAL COMMENTS RELATED TO OVERLAYING FOR HIGHWAY 14

The overall pavement width will be reduced with the overlay (refer to 3R/4R calculations). As a result, to achieve the 1.5m shoulder width in the TWLTL option, or to provide even wider shoulders, additional widening will need to be considered.

C:\Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Final Design.dwg 2024-11-21 2:09pm - DEVON.MACKIE

This page intentionally left blank

Suite 1700, 10130 - 103 Street NW Edmonton Alberta, T5J 3N9 (780) 293 - 7373 www.invistec.ca

LEGEND:

EXISTING LANE CONFIGURATION

ACCESS NUMBER

•WP	WOOD POLE

•SL STREETLIGHT

NOTES:

1. Lane markings shown were prepared using a high definition aerial photo. Survey was not carried out.

WAINWRIGHT TRAFFIC STUDY

Study Corridor 1 Hwy 14 from 1 St to Petroleum Park (Sta. 1+000 to Sta. 1+350)

> C:\Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:17pm - DEVON.MACKIE

Suite 1700, 10130 - 103 Street NW Edmonton Alberta, T5J 3N9 (780) 293 - 7373 www.invistec.ca

LEGEND:

EXISTING LANE CONFIGURATION

ACCESS NUMBER

•WP WOOD POLE

•SL STREETLIGHT

NOTES:

1. Lane markings shown were prepared using a high definition aerial photo. Survey was not carried out.

WAINWRIGHT TRAFFIC STUDY Study Corridor 1 Hwy 14 from Petroleum Park to Wainwright High School (Sta. 1+350 to Sta. 1+700)

C: \Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:17pm - DEVON.MACKIE

Suite 1700, 10130 - 103 Street NW Edmonton Alberta, T5J 3N9 (780) 293 - 7373 www.invistec.ca

LEGEND:

EXISTING LANE CONFIGURATION

(1) ACCESS NUMBER

•WP WOOD POLE

•SL STREETLIGHT

NOTES: 1. Lane markings shown were prepared using a high definition aerial photo. Survey was not carried out.

WAINWRIGHT TRAFFIC STUDY Study Corridor 1 Hwy 14 from Wainwright High School to Boston Pizza (Sta. 1+700 to Sta. 2+050)

C: \Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:17pm - DEVON.MACKIE

Suite 1700, 10130 - 103 Street NW Edmonton Alberta, T5J 3N9 (780) 293 - 7373 www.invistec.ca

LEGEND:

EXISTING LANE CONFIGURATION

(1) ACCESS NUMBER

•WP WOOD POLE

•SL STREETLIGHT

NOTES:

1. Lane markings shown were prepared using a high definition aerial photo. Survey was not carried out.

WAINWRIGHT TRAFFIC STUDY

Study Corridor 1 Hwy 14 from Boston Pizza to 9 Street (Sta. 2+050 to Sta. 2+400)

C:\Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:17pm - DEVON.MACKIE

Suite 1700, 10130 - 103 Street NW Edmonton Alberta, T5J 3N9 (780) 293 - 7373 www.invistec.ca

LEGEND:

EXISTING LANE CONFIGURATION

(1) ACCESS NUMBER

•WP WOOD POLE

•SL STREETLIGHT

NOTES:

1. Lane markings shown were prepared using a high definition aerial photo. Survey was not carried out.

WAINWRIGHT TRAFFIC STUDY

Study Corridor 1 Hwy 14 from 9 Street to 14 Street (Sta. 2+400 to Sta. 2+700)

C:\Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:17pm - DEVON.MACKIE

Suite 1700, 10130 - 103 Street NW Edmonton Alberta, T5J 3N9 (780) 293 - 7373 www.invistec.ca

LEGEND:

✤ EXISTING LANE CONFIGURATION

- 1 ACCESS NUMBER
- •WP WOOD POLE
- •SL STREETLIGHT

NOTES: 1. Lane markings shown were prepared using a high definition aerial photo. Survey was not carried out.

WAINWRIGHT TRAFFIC STUDY Study Corridor 1 Hwy 14 from 14 Street to Wainwright Seed Cleaning Plant (Sta. 2+700 to Sta. 3+050)

> C: \Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.deg 2024-11-21 3:17pm - DEVON.MACKE

Suite 1700, 10130 - 103 Street NW Edmonton Alberta, T5J 3N9 (780) 293 - 7373 www.invistec.ca

LEGEND:

EXISTING LANE CONFIGURATION

- 1 ACCESS NUMBER
- •WP WOOD POLE
- •SL STREETLIGHT

NOTES: 1. Lane markings shown were prepared using a high definition aerial photo. Survey was not carried out.

WAINWRIGHT TRAFFIC STUDY Study Corridor 1 Hwy 14 from Wainwright Seed Cleaning

Plant to Waintel Studio Motel (Sta. 3+050 to Sta. 3+400)

> C: \Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:17pm - DEVON.MACKIE

Suite 1700, 10130 - 103 Street NW Edmonton Alberta, T5J 3N9 (780) 293 - 7373 www.invistec.ca

LEGEND:

EXISTING LANE CONFIGURATION

- ACCESS NUMBER
- •WP WOOD POLE
- •SL STREETLIGHT

NOTES: 1. Lane markings shown were prepared using a high definition aerial photo. Survey was not carried out.

WAINWRIGHT TRAFFIC STUDY Study Corridor 1 Hwy 14 from Waintel Studio Motel to Paul's Trailer & Truck Outfitter (Sta. 3+400 to Sta. 3+750)

> C: \Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:17pm - DEVON.MACKIE

N /

Suite 1700, 10130 - 103 Street NW Edmonton Alberta, T5J 3N9 (780) 293 - 7373 www.invistec.ca

LEGEND:

EXISTING LANE CONFIGURATION

(1) ACCESS NUMBER

•WP WOOD POLE

•SL STREETLIGHT

NOTES:

1. Lane markings shown were prepared using a high definition aerial photo. Survey was not carried out.

WAINWRIGHT TRAFFIC STUDY **Study Corridor 1** Hwy 14 from Moonlight Bay Brewing to Circle K (Sta. 3+750 to Sta. 4+150)

C:\Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:17pm - DEVON.MACKIE

Suite 1700, 10130 - 103 Street NW Edmonton Alberta, T5J 3N9 (780) 293 - 7373 www.invistec.ca

LEGEND:

EXISTING LANE CONFIGURATION

1 ACCESS NUMBER

•WP WOOD POLE

•SL STREETLIGHT

NOTES: 1. Lane markings shown were prepared using a high definition aerial photo. Survey was not carried out.

WAINWRIGHT TRAFFIC STUDY

Study Corridor 1 Hwy 14 from Circle K to Hwy 41 (Sta. 4+150 to 4+450)

> C:\Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:17pm - DEVON.MACKIE

N /

	-		
Consu	ltina	1+4	
Jonsu	TUING	LUG.	

Edmonton Alberta, T5J 3N9 (780) 293 - 7373 www.invistec.ca

E	G	E	Ν	D		

- WOOD POLE ●WP
- •

SL	STREETLIGHT

JURATION	

1:1000 EXHIBIT NO: 2.2.1 Study Corridor 2 23 Ave from 100m West of 23 St to 250m East of 23 St (Sta. 2+000 to 2+350)

C: \Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:17pm - DEVON.MACKIE

1	

Suite 1700, 10130 - 103 Street NW Edmonton Alberta, T5J 3N9 (780) 293 - 7373 www.invistec.ca

LEGEND:

EXISTING LANE CONFIGURATION

- •WP WOOD POLE
- •SL STREETLIGHT

NOTES:

1:1000 EXHIBIT I			2.2.2	
1:1000	0	10	20	30
SCALE:				

WAINWRIGHT TRAFFIC STUDY **Study Corridor 2** 23 Ave from 250m East of 23 St to 600m East of 23 St (Sta. 2+350 to 2+700)

C: \Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:17pm - DEVON.MACKE

N /

Invistec Consulting Ltd.	LEGEND:
	•

Suite 1700, 10130 - 103 Street NW Edmonton Alberta, T5J 3N9 (780) 293 - 7373 www.invistec.ca

•WP WOOD POLE

•SL STREETLIGHT

NOTES:

EXISTING LANE CONFIGURATION

SCALE: 0 10 20 30 1:1000 EXHIBIT NO: 2.2.3

WAINWRIGHT TRAFFIC STUDY

Study Corridor 2 23 Ave from 600m East of 23 St to 43m East of Hwy 41 (Sta. 2+700 to 2+980)

> C: \Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:17pm - DEVON.MACKIE

1	Invistec Consulting Ltd.	LEGEND:	NOTES:	SCALE:
Λ	Suite 1700, 10130 - 103 Street NW Edmonton Alberta, T5J 3N9 (780) 293 - 7373	 EXISTING LANE CONFIGURATION WP WOOD POLE SI STREETLIGHT 		0 10 20 30 1:1000 EXHIBIT NO:
	www.invistec.ca			2.3.1

WAINWRIGHT TRAFFIC STUDY

Study Corridor 3 Hwy 41 from 180m South of Hwy 14 to 200m north of Hwy 14 (Sta. 3+000 to 3+380)

C: \Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:19pm - DEVON.MACKIE

Hwy 14 to 580m north of Hwy 14 (Sta. 3+380 to 3+700)

C: \Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existin_dwg 2024-11-21 3:19pm - DEVON.MACKIE

C: \Users\Devon.Mackie\appdata\local\temp\AcPublish_13664\4022001-Existing.dwg 2024-11-21 3:19pm - DEVON.MACKIE

This page intentionally left blank

Invistec Consulting Ltd. 10130 - 103 Street, 17th Floor Edmonton Alberta, T5J 3N9 780-984 - 1816 www.invistec.ca TOWN OF WAINWRIGHT TRAFFIC IMPACT ASSESSMENT HIGHWAY 14 (14 AVENUE) COLLISION DIAGRAM 1st STREET

(2019-2023) TOTAL: 2 COLLISIONS

0 5 10 15 20 25

Invistec Consulting Ltd. 10130 - 103 Street, 17th Floor Edmonton Alberta, T5J 3N9 780-984 - 1816 www.invistec.ca TOWN OF WAINWRIGHT TRAFFIC IMPACT ASSESSMENT HIGHWAY 14 (14 AVENUE) COLLISION DIAGRAM 6th STREET TOTAL : 2 COLLISIONS

(2019-2023)

(2019-2023)

0 5 10 15 20

Invistec Consulting Ltd. 10130 - 103 Street, 17th Floor Edmonton Alberta, T5J 3N9 780-984 - 1816 www.invistec.ca TOWN OF WAINWRIGHT TRAFFIC IMPACT ASSESSMENT HIGHWAY 14 (14 AVENUE) COLLISION DIAGRAM 14th STREET

TOTAL : 5 COLLISIONS

(2019-2023)

Invistec Consulting Ltd. 10130 - 103 Street, 17th Floor Edmonton Alberta, T5J 3N9 780-984 - 1816 www.invistec.ca TOWN OF WAINWRIGHT TRAFFIC IMPACT ASSESSMENT HIGHWAY 14 (14 AVENUE) COLLISION DIAGRAM 23rd STREET

TOTAL : 3 COLLISIONS

(2019-2023)

TOTAL: 7 COLLISIONS

Collisions between 2019 and 2023* - Sorted by Date

#	Year	KM_ POST	X-St	Date	Time	Environ Conditions	Surface Conditions	Severity	COLLISION_DESCRIPTION
1		42.072		2019.02.21		Clear	Slush/ Snow/ Ice		Driver 1 stopped at red lights on Highway 14 and 10 Street (14 Street) when vehicle 2 pulled up behind vehicle 1 and stopped. A 3rd vehicle coming up behind vehicle 2 slid on ice and ran into the back of vehicle 2 which hit the back of vehicle 1. Damage to vehicle 1 and 2. No damage to vehicle 3.
2	2019	42.876	23 St	2019.03.15	12:45 PM	Clear	Dry	PDO	Vehicle 1 southbound on 23 Street stopped at Highway 14 to turn right to go westbound on Highway 14. Vehicle 2 pulled into the space to the right of the stopped semi thinking he was going straight, when Vehicle 1 started to turn right and damaged the drivers side of the vehicle.
3	2019	40.445	1 St	2019.04.02	4:00 PM	Clear	Dry		Driver 1 was stopped at the intersection of 1 Street and Highway 14 when Driver 2 pulled up and stopped behind Driver 1. Driver 2 thought the first vehicle had started to move and struck the back of the vehicle causing damage.
4	2019	39.582	Hwy 41	2019.05.03	9:10 AM	Clear	Dry	PDO	D1 was stopped at the stop sign at Highway 41 and 14 when D2 pulled up behind vehicle and stopped. D2 thought other vehicle was proceeding to turn and started moving and struck the back of D1.
5	2020	43.689	Hwy 41	2019.05.05	7:30 PM	Clear	Dry	Injury	Object #1 travelling East on Hwy #14 approaching Hwy #41 . Object hand signalled to turn right, South onto Hwy 41. Object #2 travelling behind Object #1, did not see the hand signal and him turn, striking the back of Object #1.
6	2019	42.082	14 St	2019.06.07	1:20 PM	Clear	Dry	Injury	Driver 1 reported she was stopped facing South waiting for a truck to pass when she was struck from behind by Driver 2 causing damage to her vehicle.
7	2019	41.256	6 St	2019.09.20	1:00 PM	Clear	Dry	PDO	Driver 1 travelling westbound on Highway 14 to turn left on to 6 Street when Driver 2 was stopped at the stop sign to turn left on to Highway 14 when the vehicles struck. Driver 1 front drivers side tire with Driver 2 front drivers side.
8	2019	43.294	27 St	2019.12.11	6:15 AM	Clear	Dry	Injury	Object 1 WB, turning left SB in the path of EB Object 2, causing collision
9	2020	43.718	Hwy 41	2020.05.12	0:20 AM	Clear	Dry	PDO	Driver 1, driving Southbound on Highway 41 near Wainwright. Driver felt dizzy, and rolled semi into Westbound ditch.
10	2020	42.875		2020.07.07		Clear	Dry		Driver 1 was stopped at the intersection of Highway 14 and 23 Street to turn left onto 23 Street when Driver 2 ran into the back of the SUV causing damage.
11	2020	43.298	27 St	2020.08.03	8:00 PM	Clear	Dry	PDO	Vehicle travelling west bound on highway 14 entering into Wainwright at the intersection of 27 street . Vehicle was too far over to the right side of his driving lane and went onto the median colliding with the "Stop Line" sign and destroying the sign/pole.
12	2920	41.882	Hwy 41	2020.09.19	2:50 PM	Clear	Dry	PDO	Driver 1 stopped behind another vehicle turning north off of Highway 14 when she was rear ended by Driver 2 causing damage to both vehicles.
13	2020	42.876	23 St	2020.11.19	2:45 PM	Snow	Slush/ Snow/ Ice	PDO	Driver 1 was turning North onto 23rd Street and slid into Object 1 because of the icy road conditions at the time.
14	2020	41.255	6 St	2020.11.20	2:00 PM	Clear	Slush/ Snow/ Ice	PDO	Vehicle 1 travelling West on Highway 14, slowed down to turn South onto 6 Street. Vehicle 2 travelling West on Highway 14 noticed Vehicle 1 slow down quickly to turn. Vehicle 2 tried to stop but slid on Highway into the back of Vehicle 1.
15	2021	43.3	27 St	2021.05.20	9:45 AM	Clear	Dry	PDO	Driver 1 stopped at intersection at a Red light. Driver 2 rear ended Driver 1.
16	2021	43.295	27 St	2021.07.02	9:30 AM	Clear	Dry	PDO	Object # 1 travelling East on Hwy #14 entering intersection. Object #2 travelling West on Hwy #14 and turned south (left) in front of Object #1 causing Object #1 to strike the front passengers side of Object #2.

Collisions between 2019 and 2023* - Sorted by Date

#	Year	KM_ POST	X-St	Date	Time	Environ Conditions	Surface Conditions	Severity	COLLISION_DESCRIPTION
17	2021	40.44	1 St	2021.07.12	3:30 PM	Clear	Dry		D1 travelling eastbound on Highway 14 to turn left (north) onto 1 street when D2 who was following a red SUV
									behind D1, SUV swerved over to the right lane and D2 didn't see that D1 was turning left and tried to avoid hitting
									him but just got the back corner of trailer causing damage. Minor Damage to the Trailer which has been fixed.
18	2021	43.291	27 St	2021.10.24	3.55 DM	High Wind	Dry	Injury	Damage Sticker issued to Kenlar NFAR CH V1 travelling east bound on highway 14 at the intersection of 27 street . V1 turned left across the path of the
	2021	40.201	27 01	2021.10.24	0.001 10	r ligit wind	Diy		oncoming V2 who was going eastbound on highway 14. Both vehicles had green lights but V1 proceeded to turn
									before it was safe to do so. V2 swerved to avoid collision with V1 but clipped the rear bumper.
19	2021	42.07	14 St	2021.11.16	0:00 AM	Snow	Slush/		subject 1 driving a white car hit subject 2 driving a silver truck in intersection. Subject 1 did not stop at the
							Snow/ Ice		intersection when traffic control lights were not functioning. Subject 1 did not slow down, yield or stop causing
									subject 2 to get hit in the intersection.
20	2021	43.292	27 St	2021.12.26	1:50 PM	Clear	Slush/		MOTLEY was stopped at a red light on Highway 14 waiting to turn left onto 27 Street when BAYER came up behind
							Snow/ Ice		him and due to the ice on the road BAYER was not able to stop and struck the back of the vehicle trailer hitch.
21	2021	42.071	14 St	2021.12.29	8:20 AM	Clear	Slush/	PDO	Two vehicle MVC at Highway 14 and 10 Street (14 Street). BORGES travelling westbound on Highway 14 when
-·					0.207.00	0.00.	Snow/ Ice		NICHOLSON travelling northbound on 10th Street entered the intersection with a red light and struck BORGES
									vehicle. BORGES vehicle ended up in the north ditch close to Fas Gas. No injuries. Both vehicles towed. CN
									arranged their own tow.
22	2021	43.291	27 St	2021/06.27	1:00 PM	Clear	Dry	Injury	V1 travelling eastbound on hwy 14 going through the intersection at 27 street in Wainwright. V2 was going
									westbound on hwy 14 and turned to go southbound right in front of V1. V1 had no time to react and collided with
									V2. V1 travelling 60-65 km/h just prior to impact. Light was green when vehicles approached intersection and it
	0000	40.070	44.01	0000 04 07	40.07.444		011./		turned yellow the moment before impact.
23	2022	42.072	14 St	2022.01.07	10:07 AM	Clear	Slush/	PDO	Vehicle 1 travelling North on 10 Street (14 Street) approaching lights at intersection, light turned as Vehicle 1 was
							Snow/ Ice		going through. Vehicle 1 tried to speed up to get through intersection and started to slide. Vehicle 2 was stopped at
									the light waiting to turn South onto 10 Street. Vehicle 1 slid into the front driver side of Vehicle 2 causing damage to both vehicles.

*2023 data is preliminary as of 2024-07-03.

Locations are selected based on the following highway control section setup

1) plot.HIGHWAY = '14' AND Control_Section = 14 AND KM_POST BETWEEN 40.410 AND 43.72

or 2) plot.HIGHWAY = '41' AND Control_Section = 16 AND KM_POST BETWEEN 37.936 AND 39.68

This page intentionally left blank

0 10 12	4 2 7	21 37 21		14 14 5	49 15 34	97 97 23	61 17 3
КМЯ	ע ע צ	ע <i>ע</i> ש		к 1 л	ע √ צ	ע <i>א</i> א	к ћ л
7 5 20	9 7 5 4	11 7 K	21	38 7 5 9	103 7 54	84 7 5 60	57 7
\rightarrow Hwy 14 & 1 St \leftarrow 98	$329 \rightarrow$ Hwy 14 & 10a St $\leftarrow 282$	$273 \rightarrow Hwy 14 \& 14 St \leftarrow$	347 415 → Hwy 14 & 15 St ←	493 379 → Hwy 14 & 18 St ← 48	3 324 → Hwy 14 & 23 St ← 432	$69 \rightarrow Hwy 14 \& 27 St \leftarrow 254$	122 \rightarrow Hwy 14 & Hwy 41 \leftarrow
⊻ V ₁₀₀ - AM ⊭ 147		-					69 凶 V ₁₀₀ - AM ⊭
「 下 个 7							「「 「 下 小 刀
		42 26 189	5 22				62 17 13
	2022 Raw Data Σ 677	2023 Raw Data Σ 11	98 2022 Raw Data Σ 98	38 9 38 1 <mark>3 2</mark> 023 Raw Data Σ 1093	10 15 10 2023 Raw Data Σ 1090	236 139 56 2023 Raw Data Σ 1300	
Raw Data Σ 614 C Traffic Counts - 2		2023 Raw Data Σ 11 Hour Estimates (10a S	98 2022 Raw Data Σ 98	13 2023 Raw Data Σ 1093	2023 Raw Data Σ 1090	2023 Raw Data Σ 1300	2022 Raw Data Σ
Raw Data Σ 614 C Traffic Counts - 2 0 14 10	2023 PM 100th Highest	2023 Raw Data Σ 11 Hour Estimates (10a Si 11 31 27	98 2022 Raw Data Σ 98	 2023 Raw Data Σ 1093 27 4 8 	2023 Raw Data Σ 1090	2023 Raw Data Σ 1300 81 167 81	2022 Raw Data Σ
taw Data Σ 614 Traffic Counts - 2 0 14 10 <u> </u> <u> </u>	023 PM 100th Highest	2023 Raw Data Σ 11 Hour Estimates (10a S 11 31 27 ل ل ب ب	98 2022 Raw Data Σ 98 t, 15 St & Hwy 41 are 2022 data)	13 2023 Raw Data Σ 1093 27 4 8 Σ ν ν ν	2023 Raw Data Σ 1090 115 12 36 ۲ 4 μ	2023 Raw Data <u>Σ 1300</u> 81 167 81 <u>ک</u> ل ک	2022 Raw Data Σ 38 13 3 2 4 4 3
Σ 614 Counts - 2 0 0 14 10 10 2 14 10 14 10 14 14 10 14 10 14 10	023 PM 100th Highest 6 6 4 ビ レ レ リ 13 オ 0 0	2023 Raw Data Σ 11 Hour Estimates (10a S 11 31 27 لا لا ب 27 7	98 2022 Raw Data Σ 98 t, 15 St & Hwy 41 are 2022 data) 19	13 2023 Raw Data Σ 1093 27 4 8 27 4 8 27 4 8 27 5 0	2023 Raw Data Σ 1090 115 12 36 μ μ μ 151 7 Γ 36	2023 Raw Data Σ 1300 81 167 81 27 7 57 7 5 29	2022 Raw Data Σ 38 13 3 μ μ μ 44 7
Raw DataΣ614C Traffic Counts - 2001410	$\begin{array}{c c} \textbf{023 PM 100th Highest} \\ \hline 6 & 6 & 4 \\ \hline & \measuredangle & \checkmark & \curlyvee \\ 13 & 7 \\ \hline 342 \rightarrow \textbf{Hwy 14 \& 10a St} \leftarrow 258 \end{array}$	2023 Raw Data Σ 11 Hour Estimates (10a Single and the set of the set o	98 2022 Raw Data Σ 98 t, 15 St & Hwy 41 are 2022 data) 19 217 543 → Hwy 14 & 15 St ←	13 2023 Raw Data Σ 1093 27 4 8 27 4 8 2 4 3 19 7 19 7 19 7 Hwy 14 & 18 St ← 31	2023 Raw Data Σ 1090 115 12 36 $ \begin{array}{c} $	2023 Raw Data Σ 1300 81 167 81 \swarrow \downarrow \checkmark 57 7 130 \rightarrow Hwy 14 & 27 St \leftarrow 89	2022 Raw Data Σ 38 13 3 ∠ ↓ ↓ 44 7 155 → Hwy 14 & Hwy 41 ←
Raw DataΣ614Comparison01410	$\begin{array}{c c} \textbf{023 PM 100th Highest} \\ \hline 6 & 6 & 4 \\ \hline & \measuredangle & \checkmark & \curlyvee \\ 13 & 7 & \hline \\ 342 & \rightarrow \textbf{Hwy 14 \& 10a St} & \leftarrow 258 \end{array}$	2023 Raw Data Σ 11 Hour Estimates (10a Si 11 31 27 ∠ ↓ ⊥ ⊥ 27 7 K K 317 → Hwy 14 & 14 St ←	98 2022 Raw Data Σ 98 t, 15 St & Hwy 41 are 2022 data) 19 217 543 → Hwy 14 & 15 St ←	13 2023 Raw Data Σ 1093 27 4 8 27 4 8 19 7 5 392 585 → Hwy 14 & 18 St ← 392 585	2023 Raw Data Σ 1090 115 12 36 $ \begin{array}{c} $	2023 Raw Data Σ 1300 81 167 81 \swarrow \downarrow \checkmark 57 7 130 \rightarrow Hwy 14 & 27 St \leftarrow 89	2022 Raw Data Σ 38 13 3 ∠ ↓ ⊥ 44 7 155 → Hwy 14 & Hwy 41 ←
Raw DataΣ614Comparison01410	$\begin{array}{c c} \textbf{023 PM 100th Highest} \\ \hline 6 & 6 & 4 \\ \hline & \measuredangle & \checkmark & \curlyvee \\ 13 & 7 \\ \hline 342 \rightarrow \textbf{Hwy 14 \& 10a St} \leftarrow 258 \end{array}$	2023 Raw Data Σ 11 Hour Estimates (10a Single and the set of the set o	98 2022 Raw Data Σ 98 t, 15 St & Hwy 41 are 2022 data) 19 217 543 → Hwy 14 & 15 St ←	13 2023 Raw Data Σ 1093 27 4 8 27 4 8 2 4 3 19 7 19 7 19 7 Hwy 14 & 18 St ← 31	2023 Raw Data Σ 1090 115 12 36 $ \begin{array}{c} $	2023 Raw Data Σ 1300 81 167 81 \swarrow \downarrow \checkmark 57 7 130 \rightarrow Hwy 14 & 27 St \leftarrow 89	2022 Raw Data Σ 38 13 3 ∠ ↓ ⊻ 44 7 155 → Hwy 14 & Hwy 41 ←

0 10 12	4 2 7	21 37 21		14 14 5	49 15 34	97 97 23	61 17 3
к ћ л	<u>к</u> л л	к ћ л		<u>к 1 л</u>	к 1 л	к ћ л	\lor \lor \lor
7 5 20	9 7	11 7 5 21		38 7	103 7 54	84 7 5 60	57 7
\rightarrow Hwy 14 & 1 St \leftarrow 98	329 → Hwy 14 & 10a St ← 282	273 → Hwy 14 & 14 St ← 347	' 415 → Hwy 14 & 15 St ← 493	379 → Hwy 14 & 18 St ← 483	324 → Hwy 14 & 23 St ← 432	69 → Hwy 14 & 27 St ← 254	122 → Hwy 14 & Hwy 41 ←
ע V ₁₀₀ - AM ע 147	16 🛛 V ₁₀₀ - AM 🗠 8	21 ↘ V ₁₀₀ - AM ∠ 189	0 3 ⊐ V ₁₀₀ - AM ∠ 45	52 ↘ V ₁₀₀ - AM ∠ 14	34 ⊻ V ₁₀₀ - AM ∠ 10	102 ⊐ V ₁₀₀ - AM ∠ 83	69 ↘ V ₁₀₀ - AM ⊭
$ \land \land \land$					$\nabla \uparrow 7$		
12 29 74	8 3 5	42 26 189	5 22	38 9 38	10 15 10	236 139 56	62 17 13
	2022 Raw Data Σ 677	2023 Raw Data Σ 1198					2022 Raw Data Σ
Traffic Counts - 20		Hour Estimates (10a St, 15	2022 Raw Data Σ 983 5 St & Hwy 41 are 2022 data) - Adj	usted for closure of N L	.eg @ 18 ST & S Leg @ 2	23 St	
Traffic Counts - 20 0 14 10	23 PM 100th Highest H 6 6 4	Hour Estimates (10a St, 15 11 31 27		usted for closure of N L	.eg @ 18 ST & S Leg @ 2 115 12 36	23 St 81 167 81	38 13 3
Traffic Counts - 20 0 14 10 ビ リ ユ	23 PM 100th Highest H 6 6 4 ビ	Hour Estimates (10a St, 15 11 31 27 ب لا ب ع	5 St & Hwy 41 are 2022 data) - Adj	usted for closure of N L 27 4 8 ビーショー	eg @ 18 ST & S Leg @ 2 115 12 36 لا ب لا	23 St 81 167 81 ビーレーレ	38 13 3 بد بل ي
Traffic Counts - 20 0 14 10 ビーショ オートトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトトート オートトトートトートトート	23 PM 100th Highest H 6 6 4 ビ	Hour Estimates (10a St, 15 11 31 27 بو ب ع 27 7	5 St & Hwy 41 are 2022 data) - Adj	usted for closure of N L 27 4 8 ビ	Leg @ 18 ST & S Leg @ 2 115 12 36 الا لا لا لا 151 م الح 36	23 St 81 167 81 ビーショ 57 オート 29	38 13 3 لا لا لا لا 44 ⊅
Traffic Counts - 20 0 14 10 \swarrow \checkmark \checkmark \land 14 Hwy 14 & 1 St \leftarrow 104	D23 PM 100th Highest F 6 6 4	Hour Estimates (10a St, 15 11 31 27 27 7 317 → Hwy 14 & 14 St ← 217	5 St & Hwy 41 are 2022 data) - Adj 7 543 → Hwy 14 & 15 St ← 392	usted for closure of N L 27 4 8 ∠ ↓ ⊥ 19 7 Hwy 14 & 18 St ← 317	Leg @ 18 ST & S Leg @ 2 115 12 36 ∠ ↓ ↘ 151 7 462 → Hwy 14 & 23 St ← 215	23 St 81 167 81 \swarrow \downarrow \checkmark 57 7 130 \rightarrow Hwy 14 & 27 St \leftarrow 89	38 13 3 ∠ ↓ ⊻ 44 7 155 → Hwy 14 & Hwy 41 €
Traffic Counts - 20 0 14 10 $\swarrow \qquad \checkmark \qquad \checkmark$ Hwy 14 & 1 St $\lor \qquad \lor \qquad \lor \qquad \land \qquad \land \qquad 14$ $\mapsto \qquad \downarrow \qquad \lor \qquad \land \qquad \land$	D23 PM 100th Highest F 6 6 4	Hour Estimates (10a St, 15 11 31 27 27 7 27 7 Hwy 14 & 14 St ← 217	5 St & Hwy 41 are 2022 data) - Adj	usted for closure of N L 27 4 8 ビ	Leg @ 18 ST & S Leg @ 2 115 12 36 ∠ ↓ ↘ 151 7 462 → Hwy 14 & 23 St ← 215	23 St 81 167 81 $ \begin{array}{c} & \swarrow & \searrow \\ & & & \searrow \\ & & & & \searrow \\ & & & & & & \\ & & & & & & \\ & & & &$	38 13 3 ∠ ↓ ⊻ 44 7 155 → Hwy 14 & Hwy 41 €
Traffic Counts - 20 0 14 10 $\swarrow \qquad \lor \qquad \lor \qquad \lor$ 7 Hwy 14 & 1 St \leftarrow 104	D23 PM 100th Highest F $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Hour Estimates (10a St, 15 11 31 27	5 St & Hwy 41 are 2022 data) - Adj 7 543 → Hwy 14 & 15 St ← 392	usted for closure of N L $ \begin{array}{ccccccccccccccccccccccccccccccccccc$	Leg @ 18 ST & S Leg @ 2 115 12 36 $\swarrow \qquad \Downarrow \qquad \checkmark$ 151 7 462 \rightarrow Hwy 14 & 23 St 40 \checkmark V ₁₀₀ - PM \checkmark 0	23 St 81 167 81 $\swarrow \qquad \checkmark \qquad \checkmark$ 57 7 130 \rightarrow Hwy 14 & 27 St 183 $\checkmark \qquad V_{100} - PM \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark \qquad \checkmark$	38 13 3 ∠ ↓ ↓ 44 7 155 → Hwy 14 & Hwy 41 78 ↓ V ₁₀₀ • PM

TURNING MOVEMENT SUMMARY DIAGRAM

WEST ON	HWY 14	
	VOL	%
A: PASSENGER VEHICLES	7819	95.82
B: RECREATION VEHICLES	3	0.04
C: BUSES	6	0.07
D: SINGLE UNIT TRUCKS	165	2.02
E: TRACTOR TRAILER COMB.	167	2.05
ASDT 9180	AADT	8160

TURNING MOVEMENT ABBREVIATIONS

NL : TRAFFIC FROM NORTH TURNING LEFT

- NT : TRAFFIC FROM NORTH PROCEEDING THROUGH
- NR : TRAFFIC FROM NORTH TURNING RIGHT
- SL : TRAFFIC FROM SOUTH TURNING LEFT
- ST : TRAFFIC FROM SOUTH PROCEEDING THROUGH
- SR : TRAFFIC FROM SOUTH TURNING RIGHT
- EL : TRAFFIC FROM EAST TURNING LEFT ET : TRAFFIC FROM EAST PROCEEDING THROUGH
- ER : TRAFFIC FROM EAST TURNING RIGHT
- WL : TRAFFIC FROM WEST TURNING LEFT
- WT : TRAFFIC FROM WEST PROCEEDING THROUGH
- WR : TRAFFIC FROM WEST TURNING RIGHT

TURNING MOVEMENT SUMMARY DIAGRAM

 WEST ON
 HWY 14

 VOL
 %

 A: PASSENGER VEHICLES
 873
 95.31

 B: RECREATION VEHICLES
 2
 0.22

 C: BUSES
 4
 0.44

 D: SINGLE UNIT TRUCKS
 17
 1.86

 E: TRACTOR TRAILER COMB.
 20
 2.18

 TOTAL
 916
 16

TURNING MOVEMENT ABBREVIATIONS

- NL : TRAFFIC FROM NORTH TURNING LEFT
- NT : TRAFFIC FROM NORTH PROCEEDING THROUGH
- NR : TRAFFIC FROM NORTH TURNING RIGHT
- SL : TRAFFIC FROM SOUTH TURNING LEFT
- ST : TRAFFIC FROM SOUTH PROCEEDING THROUGH SR : TRAFFIC FROM SOUTH TURNING RIGHT
- EL : TRAFFIC FROM EAST TURNING LEFT
- ET : TRAFFIC FROM EAST PROCEEDING THROUGH
- ER : TRAFFIC FROM EAST TURNING RIGHT
- WL : TRAFFIC FROM WEST TURNING LEFT
- WT : TRAFFIC FROM WEST PROCEEDING THROUGH
- WR : TRAFFIC FROM WEST TURNING RIGHT

TURNING MOVEMENT SUMMARY DIAGRAM

TURNING MOVEMENT ABBREVIATIONS

WEST ON

C: BUSES

A: PASSENGER VEHICLES

B: RECREATION VEHICLES

E: TRACTOR TRAILER COMB.

TOTAL

D: SINGLE UNIT TRUCKS

NL : TRAFFIC FROM NORTH TURNING LEFT

NT : TRAFFIC FROM NORTH PROCEEDING THROUGH

NR : TRAFFIC FROM NORTH TURNING RIGHT

- SL : TRAFFIC FROM SOUTH TURNING LEFT
- ST : TRAFFIC FROM SOUTH PROCEEDING THROUGH
- SR : TRAFFIC FROM SOUTH TURNING RIGHT
- EL : TRAFFIC FROM EAST TURNING LEFT
- ET : TRAFFIC FROM EAST PROCEEDING THROUGH
- ER : TRAFFIC FROM EAST TURNING RIGHT
- WL : TRAFFIC FROM WEST TURNING LEFT
- WT : TRAFFIC FROM WEST PROCEEDING THROUGH
- WR : TRAFFIC FROM WEST TURNING RIGHT

This page intentionally left blank

10 Year Background Volumes - AM Peak Hour (Balanced)	
	0 84 0
	لا ↓ ∠ 0 م ا ا ا د 0
	$0 \rightarrow \text{Hwy 14 \& Hwy 41} \leftarrow 0$
	0 ≌ V _{BG,10} -AM ∠ 0
5 20 12 4 2 7 35 44 21 49 39 97 119 23	0 81 0 64 17 3
e ų y e u e u	к 1 л
$\begin{bmatrix} 8 & 7 \\ 128 & \rightarrow \end{bmatrix} + \\ Hwy 14 \& 15t & \leftarrow 116 \\ 343 & \rightarrow \end{bmatrix} + \\ Hwy 14 \& 10a st & \leftarrow 411 \\ 282 & \rightarrow \end{bmatrix} + \\ Hwy 14 \& 14 st & \leftarrow 351 \\ 459 & \rightarrow \end{bmatrix} + \\ Hwy 14 \& 15 st & \leftarrow 555 \\ 398 & \rightarrow \end{bmatrix} + \\ Hwy 14 \& 18 st & \leftarrow 567 \\ 333 & \rightarrow \end{bmatrix} + \\ Hwy 14 \& 23 st & \leftarrow 532 \\ Hwy 14 \& 23 st \\ \leftarrow 532 \\ 186 & \rightarrow \end{bmatrix} + \\ Hwy 14 \& 27 st \\ \leftarrow 262 \\ Hwy 14 \& 18 st \\ \leftarrow 567 \\ Hwy 14 \& 28 st \\ \leftarrow 567 \\ S12 \\ Hwy 14 \& 23 st \\ \leftarrow 512 \\ S12 \\ - S12 \\ Hwy 14 & 27 \\ S12 \\ - S12 $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
90 \U V _{BG,10} - AM \vmu 147 16 \U V _{BG,10} - AM \vmu 11 23 \U V _{BG,10} - AM \vmu 189 33 \U V _{BG,10} - AM \vmu 60 86 \U V _{BG,10} - AM \vmu 14 V _{BG,10} - AM \vmu 93 V _{BG,10} V _{BG,10} - AM \vmu 93 V _{BG,10}	73 凶 V _{BG,10} - AM ∠ 6
K ↑ 7 K ↑ 7 K ↑ 7 K 7 K 7 K 7 12 29 74 8 3 5 42 31 189 6 25 48 38 236 158 66	下个7 65 17 13
12 29 14 6 3 5 42 31 169 6 25 46 36 25 25 156 00 46 91 177	05 17 13
∠ ↓ >	
$\begin{array}{ccc} 9 & \rightarrow \\ 3 & \searrow \end{array} & \begin{array}{c} 13 \text{ Ave \& } 27 \text{ St} & \leftarrow \\ V_{BG,10} \text{ - AM} & \swarrow & 42 \end{array}$	
8 193 75	
10 Year Background Volumes - PM Peak Hour (Balanced)	
	0 55 0
	د ب ۲ ۵ ۷ ک ۲ ۵
	$\begin{array}{ccc} 0 & \gamma \\ 0 & \rightarrow \end{array} \\ Hwy 14 \& Hwy 41 \leftarrow 0 \end{array}$
	0 凶 V _{BG,10} -PM ビ 0
	0 57 0 39 13 3
5 14 10 6 6 6 38 33 33 ビー ビー ビー ビー ビー ビー ビー ビー	к 1 л
μ μ <thμ< th=""> μ <thμ< th=""> <thμ< th=""></thμ<></thμ<></thμ<>	<u>∠ ↓ ↓</u> 44 л <u>⊾ 3</u>
$\begin{bmatrix} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array} \\ \end{array} \\ \hline \end{array} \\ \rule \\ \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \end{array} \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \hline \end{array} \\ \\ \rule \\ \rule \\ \rule \\ \rule \\ \rule \\ \\	
$\begin{bmatrix} \begin{matrix} \nu & \psi & \nu \\ 5 & 7 \\ 76 & \rightarrow \\ 134 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 133 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 133 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 133 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 133 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 133 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 133 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 151 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 151 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 151 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ V_{B_{G,10}} \cdot PM \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 151 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ V_{B_{G,10}} \cdot PM \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & 7 \end{matrix}$	$\begin{array}{c c} & \swarrow & \checkmark & \checkmark \\ 44 & 7 \\ 339 \rightarrow \\ 79 & \checkmark & V_{BG,10} - PM \\ \hline \kappa & \uparrow & 7 \end{array}$ $\kappa \qquad 3 \\ \leftarrow \qquad 141 \\ \iota \qquad 10 \\ \hline \kappa & \uparrow & 7 \end{array}$
$\begin{bmatrix} \begin{matrix} \nu & \psi & \nu \\ 5 & 7 \\ 76 & \rightarrow \\ 76 & \rightarrow \\ 13 & 3 \\ 4 & \nu \\ 8 & \gamma \\ 76 & \gamma \\ 76 & \gamma \\ 8 & \gamma \\ 8 & \gamma \\ 76 & \gamma \\ 8 & \gamma \\ 76 & \gamma \\ 8 & \gamma \\ 8 & \gamma \\ 76 & \gamma \\ 8 & \gamma \\ 8 & \gamma \\ 76 & \gamma \\ 8 & \gamma \\ 8 & \gamma \\ 76 & \gamma \\ 8 & \gamma \\ 8 & \gamma \\ 76 & \gamma \\ 8 & \gamma \\ $	$\begin{array}{c c} \swarrow & \checkmark & \checkmark \\ 44 & 7 \\ 339 \rightarrow \\ 79 & \lor \\ V_{BG,10} \bullet PM \qquad \swarrow 10 \end{array}$
$\begin{bmatrix} \begin{matrix} \nu & \psi & \nu \\ 5 & 7 \\ 76 & \rightarrow \\ 134 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 133 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 133 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 133 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 133 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 133 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 133 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 151 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 151 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 151 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ V_{B_{G,10}} \cdot PM \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & 7 \end{matrix}$ $\begin{bmatrix} \nu & \psi & \nu \\ 151 \end{matrix} \\ V_{B_{G,10}} \cdot PM \\ V_{B_{G,10}} \cdot PM \\ V_{B_{G,10}} \cdot PM \\ \overline{\kappa} & 7 \end{matrix}$	$\begin{array}{c c} & \swarrow & \checkmark & \checkmark \\ 44 & 7 \\ 339 \rightarrow \\ 79 & \checkmark & V_{BG,10} - PM \\ \hline \kappa & \uparrow & 7 \end{array}$ $\kappa \qquad 3 \\ \leftarrow \qquad 141 \\ \iota \qquad 10 \\ \hline \kappa & \uparrow & 7 \end{array}$
$\begin{bmatrix} \begin{matrix} \varkappa & \psi & \varkappa \\ 5 & 7 \\ 76 & \rightarrow \\ 134 & \varkappa \\ 34 & \varkappa \\ 51 & 34 & 233 \end{bmatrix}$ $\begin{bmatrix} \varkappa & \psi & \varkappa \\ 13 & 7 \\ 1463 & \rightarrow \\ 109 & \varkappa \\ 1463 & \rightarrow \\ 110 & 16 & 51 \\ 51 & 34 & 233 \end{bmatrix}$ $\begin{bmatrix} \varkappa & \psi & \varkappa \\ 13 & 7 \\ 1463 & \rightarrow \\ 183 & \varkappa \\ 11 & 5 & 15 \\ 15 & 36 \\ 11 & 5 & 15 \\ 15 & 36 \\ 11 & 5 & 15 \\ 11 & 11 &$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} \begin{matrix} \nu & \psi & \nu \\ 5 & 7 \\ 76 & \rightarrow \\ 13 & 4 \\ 34 & \nu \\ \hline V_{B0,10} \cdot PM \\ \hline 5 & 7 \\ 34 & 233 \end{bmatrix} \begin{bmatrix} \kappa & 6 \\ 46 & 7 \\ \hline Wy 14 \& 10a \text{ St} \\ 65 & 324 \\ \hline S7 & 7 \\ \hline V_{B0,10} \cdot PM \\ \hline K & \uparrow & 7 \\ \hline 51 & 34 & 233 \end{bmatrix} \begin{bmatrix} \kappa & 46 \\ 463 & 2 \\ \hline Wy 14 \& 10a \text{ St} \\ 65 & 324 \\ \hline V_{B0,10} \cdot PM \\ \hline K & \uparrow & 7 \\ \hline S7 & 50 \\ 279 \end{bmatrix} \begin{bmatrix} \kappa & \psi & \nu \\ F & \gamma \\ F & \gamma \\ F & \gamma \\ \hline S7 & 50 \\ 279 \end{bmatrix} \begin{bmatrix} \kappa & \psi & \nu \\ F & \gamma \\ F & \gamma \\ F & \gamma \\ \hline S7 & 50 \\ 279 \end{bmatrix} \begin{bmatrix} \kappa & \psi & \nu \\ F & \gamma \\ F & \gamma \\ F & \gamma \\ \hline S7 & 50 \\ 279 \end{bmatrix} \begin{bmatrix} \kappa & \psi & \nu \\ F & \gamma $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} \varkappa & \psi & \varkappa \\ 5 & 7 \\ 76 & \rightarrow \\ 76 & \rightarrow \\ 76 & \rightarrow \\ 76 & \rightarrow \\ 86,10 & PM \\ \kappa & \gamma & 7 \\ 51 & 34 & 233 \end{bmatrix}$ $\begin{bmatrix} \varkappa & \psi & \varkappa \\ 13 & 7 \\ 463 & \rightarrow \\ 86,10 & PM \\ \kappa & \gamma & 7 \\ 51 & 34 & 233 \end{bmatrix}$ $\begin{bmatrix} \varkappa & \psi & \varkappa \\ 13 & 7 \\ 463 & \rightarrow \\ 86,10 & PM \\ \kappa & \gamma & 7 \\ 11 & 5 & 15 \end{bmatrix}$ $\begin{bmatrix} \varkappa & \psi & \varkappa \\ 46 & 7 \\ 77 \\ 80,10 & PM \\ \kappa & \gamma & 7 \\ 65 & \varkappa \\ 86,10 & PM \\ \kappa & \gamma & 7 \\ 65 & 20 \\ 86,10 & PM \\ \kappa & \gamma & 7 \\ 65 & 20 \\ 86,10 & PM \\ \kappa & \gamma & 7 \\ 65 & 20 \\ 86,10 & PM \\ \kappa & \gamma & 7 \\ 65 & 20 \\ 86,10 & PM \\ \kappa & \gamma & 7 \\ 65 & 20 \\ 86,10 & PM \\ \kappa & \gamma & 7 \\ 77 \\ 80,10 & PM \\ \kappa & \gamma & 7 \\ 8118 \\ 88 & 175 & 245 \\ \kappa & \psi & \varkappa \\ 42 & 7 \\ 13 & 2 \\ 88 & 175 & 245 \\ \kappa & \psi & \varkappa \\ 42 & 7 \\ 13 & 2 \\ 88 & 175 & 245 \\ \kappa & \psi & \varkappa \\ 42 & 7 \\ 13 & 2 \\ 88 & 175 & 245 \\ \kappa & \psi & \varkappa \\ 42 & 7 \\ 13 & 2 \\ 88 & 175 & 245 \\ \kappa & \psi & \varkappa \\ 42 & 7 \\ 13 & 2 \\ 88 & 175 & 245 \\ \kappa & \psi & \varkappa \\ 42 & 7 \\ 13 & 2 \\ 88 & 175 & 245 \\ \kappa & \psi & \varkappa \\ 42 & 7 \\ 13 & 2 \\ 88 & 175 & 245 \\ \kappa & \psi & \varkappa \\ 42 & 7 \\ 13 & 2 \\ 88 & 175 & 245 \\ \kappa & \psi & \varkappa \\ 42 & 7 \\ 13 & 2 \\ 88 & 175 & 245 \\ \kappa & \psi & \varkappa \\ 42 & 7 \\ 13 & 2 \\ 88 & 175 & 245 \\ \kappa & \psi & \varkappa \\ 42 & 7 \\ 13 & 2 \\ 88 & 175 & 245 \\ \kappa & \psi & \chi \\ 42 & 7 \\ 13 & 2 \\ 88 & 175 & 245 \\ \kappa & \psi & \varkappa \\ 42 & 7 \\ 13 & 2 \\ 88 & 175 & 245 \\ \kappa & \psi & \chi \\ 42 & 7 \\ 13 & 2 \\ 80 & 10 \\ 13 & 2 \\ 13 & 40 & 827 \\ 81 & 18 \\ 13 & 2 \\ 13 & 40 & 827 \\ 14 & 40 & 827 \\ 14 & 40 & 827 \\ 14 & 40 & 827 \\ 14 & 40 & 827 \\ 14 & 40 & 827 \\ 14 & 40 & 827 \\ 14 & 40 & 827 \\ 14 & 40 & 10 \\ 14 & 40 & 10 \\ 14 & 10 & 10 \\ 14 & 10 & 10 \\ 14$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} \begin{matrix} \nu & \psi & \nu \\ 5 & 7 \\ 76 & \rightarrow \\ 13 & 4 \\ 34 & \nu \\ \hline V_{B0,10} \cdot PM \\ \hline 5 & 7 \\ 34 & 233 \end{bmatrix} \begin{bmatrix} \kappa & 6 \\ 46 & 7 \\ \hline Wy 14 \& 10a \text{ St} \\ 65 & 324 \\ \hline S7 & 7 \\ \hline V_{B0,10} \cdot PM \\ \hline K & \uparrow & 7 \\ \hline 51 & 34 & 233 \end{bmatrix} \begin{bmatrix} \kappa & 46 \\ 463 & 2 \\ \hline Wy 14 \& 10a \text{ St} \\ 65 & 324 \\ \hline V_{B0,10} \cdot PM \\ \hline K & \uparrow & 7 \\ \hline S7 & 50 \\ 279 \end{bmatrix} \begin{bmatrix} \kappa & \psi & \nu \\ F & \gamma \\ F & \gamma \\ F & \gamma \\ \hline S7 & 50 \\ 279 \end{bmatrix} \begin{bmatrix} \kappa & \psi & \nu \\ F & \gamma \\ F & \gamma \\ F & \gamma \\ \hline S7 & 50 \\ 279 \end{bmatrix} \begin{bmatrix} \kappa & \psi & \nu \\ F & \gamma \\ F & \gamma \\ F & \gamma \\ \hline S7 & 50 \\ 279 \end{bmatrix} \begin{bmatrix} \kappa & \psi & \nu \\ F & \gamma $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

10 Year Development Volumes - AM Peak Hour	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{bmatrix} 18 \\ u & u & u \\ \hline & & & \\ \hline & &$	72 21 → Hwy 14 & Hwy 41 ← 32
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
10 Year Development Volumes - PM Peak Hour	2 $21 7$ 37 4 Hwy 14 & Hwy 41 4 $V_{\text{DEV,10}} \cdot PM$ 4 52
$\begin{bmatrix} 11 \\ $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1

22 84 0 **∠** ↓ ∖

下 个 7

53 81 0 97 53 15

к 🛧 л

133 53 13

2 55 0 K V V

52 57 0

88 69 33

ע ↓ ⊻

100 40 13

⊾ 25

Σ 1103

⊼ 0

⊼ 21

Σ 1036

⊼ 0

10 Year Total Volumes - AM Peak Hour

20 Year Background Volumes	• AM Peak Hour	(Balanced)
----------------------------	----------------	------------

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\frac{1}{5} \frac{1}{7} \frac{1}{10} \frac{1}{10} \frac{1}{7} \frac{1}{10} \frac{1}$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \frac{1}{2} \rightarrow hyy (44 158) + \frac{1}{2} 35^{-7} \rightarrow hyy (44 158) + \frac{1}{2} 35^{-7} \rightarrow hyy (44 158) + \frac{1}{2} 38^{-7} \rightarrow hy (44 158) + \frac{1}{2}$
90 $\underbrace{V_{02,0} \cdot AM}_{K \oplus 7} (k + 10)_{K \oplus 7} (k + 10)_{$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{c} 46 & 91 & 177 \\ \psi & \psi & y \\ 35 & 7 \\ 9 & \Rightarrow 13 \text{ Ave & 8278} \\ 3 & y \\ \frac{13 \text{ Ave & 8278}}{N \text{ Ave & 7}} & \psi & \psi \\ 8 & 193 & 75 \end{array} $ 20 Year Background Volumes - PM Peak Hour (Balanced) $ \begin{array}{c} 0 & 56 & 0 \\ 0 & 7 \\ 0 & 4 \\ 0 & y \\ \frac{13 \text{ Ave & 8278}}{N \text{ Ave & 7}} & \psi \\ 0 & y \\ 0 & y \\ \frac{14 \text{ Ave & 168}}{N \text{ Ave & 168}} & \psi \\ 0 & y \\ \frac{5}{N \text{ Ave & 7}} & \frac{14 & 10}{N \text{ Ave & 168}} & \frac{81 & 181 & 81}{N \text{ Ave & 168}} & \frac{81 & 181 & 81}{N \text{ Ave & 168}} & \frac{81 & 181 & 81}{N \text{ Ave & 168}} & \frac{81 & 181 & 81}{N \text{ Ave & 168}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 & 7}{N \text{ Ave & 168}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 & 7}{N \text{ Ave & 168}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 & 7}{N \text{ Ave & 168}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 & 7}{N \text{ Ave & 168}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 & 7}{N \text{ Ave & 168}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 178}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 178}}{N \text{ Ave & 168}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{444}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}}{N \text{ Ave & 168}} & \frac{51 \text{ Ave & 168}$
$ \begin{array}{c} $
20 Year Background Volumes - PM Peak Hour (Balanced) $ \begin{array}{c} 9 \rightarrow \\ 3 & 9 \rightarrow \\ \hline 8 & 193 & 75 \\ \hline 8 & 111 & 15 & 15 \\ \hline 8 & 27 & 27 & 18 \\ \hline 8 & 27 & 22 \\ \hline 8 & 27 & 22 \\ \hline 8 & 13 A A B B B B \\ \hline 8 & 111 & 44 \\ \hline 8 & 181 & 81 \\ \hline 8 & 181 & 81 \\ \hline 8 & 181 & 81 \\ \hline 8 & 247 & 9 \\ \hline 8 & 27 & 22 \\ \hline 8 & 193 & 9 \\ \hline 8 & 114 & 44 \\ \hline 8 & 181 & 81 \\ \hline 8 & 247 & 9 \\ \hline 8 & 27 & 22 \\ \hline 8 & 114 & 44 \\ \hline 8 & 247 & 9 \\ \hline 8 & 27 & 22 \\ \hline 8 & 114 & 44 \\ \hline 8 & 247 & 9 \\ \hline 8 & 27 & 22 \\ \hline 8 & 114 & 44 \\ \hline 8 & 247 & 9 \\ \hline 8 & 27 & 22 \\ \hline 8 & 114 & 44 \\ \hline 8 & 247 & 9 \\ \hline 8 & 27 & 22 \\ \hline 8 & 114 & 44 \\ \hline 8 & 247 & 9 \\ \hline 8 & 27 & 22 \\ \hline 8 & 114 & 44 \\ \hline 8 & 247 & 9 \\ \hline 8 & 248 & 9 \\ \hline 8 & 27 & 22 \\ \hline 8 & 27 & 27 \\ \hline 8 & 27 & 22 \\ \hline 8 & 27 & 27 \\ \hline 8 & $
20 Year Background Volumes - PM Peak Hour (Balanced) $ \begin{array}{c} 3 & y & V_{00,0} - MI & \psi & 42 \\ \hline \kappa & \uparrow & 7 \\ 8 & 193 & 75 \end{array} $ 20 Year Background Volumes - PM Peak Hour (Balanced) $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ 0 & 7 \\ \psi & 0 \\ 0 & 9 \\ \hline \kappa & \uparrow & 7 \\ 0 & 9 \\ \hline \kappa & \uparrow & 7 \\ 13 & 7 \\ 51 & 34 & 233 \end{array} $ $ \begin{array}{c} 0 & 56 & 6 & 6 \\ \hline \kappa & 4 & 3 \\ 0 & 7 \\ \hline \kappa & 7 \\ 7 \\ 11 & 5 & 15 \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \kappa & 42 \\ 8 & 193 & 75 \end{array} $ $ \begin{array}{c} 114 & 44 \\ \psi & y \\ \hline \kappa & 42 \\ \hline \kappa & 5 \\ \hline \kappa & 7 \\ 187 & 96 & 118 \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \kappa & 7 \\ 187 & 96 & 118 \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \kappa & 7 \\ 80 & 9 \\ \hline V_{00,0} - PM \\ \hline \kappa & 7 \\ 115 & 15 \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \kappa & 7 \\ 7 & 7 \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \kappa & 7 \\ 7 & 7 \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \kappa & 7 \\ 7 & 7 \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \kappa & 7 \\ 7 & 7 \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \end{array} $ $ \begin{array}{c} 0 & 57 & 50 & 79 \\ \hline \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \end{array} $ $ \begin{array}{c} 0 & 56 & 0 \\ \psi & \psi & y \\ \end{array} $ $ \begin{array}{c} 0 & 0 & 0 \\ \end{array} $ $ \begin{array}{c} 0 & 0 & 0 \\ 0 & 0 \\ \end{array} $ $ \begin{array}{c} 0 & 0 & 0 \\ \end{array} $ $ \begin{array}{c} 0 & 0 & 0 \\ \end{array} $ $ \begin{array}{c} 0 & 0 & 0 \\ \end{array} $ $ \begin{array}{c} 0 & 0 & 0 \\ \end{array} $ $ \begin{array}{c} 0 & 0 & 0 \\ \end{array} $ $ \begin{array}{c} 0 & 0 & 0 \\ \end{array} $ $ \begin{array}{c} 0 & 0 \\ \end{array} $ $ \begin{array}{c} 0 & 0 & 0 \\ \end{array} $ $ \begin{array}{c} 0 & 0 \\ \end{array} $ $ \begin{array}{c} 0 & 0 & 0 \\ \end{array} $ $ \begin{array}{c} 0 & 0 & 0 \\ \end{array} $ $ \begin{array}$
20 Year Background Volumes - PM Peak Hour (Balanced) $ \begin{bmatrix} \bar{\kappa} + \bar{\pi} \\ \bar{8} & 193 & 75 \end{bmatrix} $ 20 Year Background Volumes - PM Peak Hour (Balanced) $ \begin{bmatrix} \bar{\kappa} + \bar{\pi} \\ \bar{8} & 193 & 75 \end{bmatrix} $ $ \begin{bmatrix} 0 & 56 & 0 \\ \psi + \nu \\ 0 & 2 \\ \psi + \nu \\ 0 & 58 & 0 \\ 0 & 58 & 0 \\ 0 & 2 \\ \psi + \nu \\ 0 & 58 & 0 \\ 0 & 2 \\ \psi + \nu \\ 0 & 58 & 0 \\ 0 & 2 \\ \psi + \nu \\ 0 & 58 & 0 \\ \psi + \nu \\ 0 & 58 & 0 \\ 0 & 58 & 0 \\ \psi + \nu \\ 0 & 58 & 0 \\$
20 Year Background Volumes - PM Peak Hour (Balanced) $ \begin{bmatrix} 0 & 56 & 0 \\ 2 & \psi & y \\ 0 & 7 \\ 0 & 2 \\ Hwy 148 Hwy 41 \\ 0 & 10 \\ 2 & \psi & y \\ 0 & 7 \\ 0 & 2 \\ Hwy 148 Hwy 41 \\ 0 & 10 \\ 2 & \psi & y \\ 0 & 7 \\ 0 & 2 \\ Hwy 148 Hwy 41 \\ 0 & 10 \\ 2 & \psi & y \\ 0 & 7 \\ 0 & 2 \\ Hwy 148 Hwy 41 \\ 0 & 10 \\ 2 & \psi & y \\ 0 & 7 \\ 0 & 2 \\ Hwy 148 Hwy 41 \\ 0 & 10 \\ 2 & \psi & y \\ 0 & 7 \\ 0 & 2 \\ 0 & $
$ \begin{array}{c} 5 & 14 & 10 \\ & & & & & & \\ & & & & & & \\ & & & & $
$ \begin{array}{c} \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \begin{array}{c} & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ & \end{array} \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ & \begin{array}{c} & \end{array} \\ \\ & \end{array} \\ \\ \\ & \end{array} \\ \\ \\ \\ & \begin{array}{c} & \end{array} \\ \\ \\ & \end{array} \\ \\ \\ \\ \\ & \end{array} \\ \\ \\ \\ \\ & \end{array} \\ \\ \\ \\$
$ \begin{array}{c} 0 & 7 \\ 0 & 9 $
$ \begin{array}{c} 0 \rightarrow \\ 0 & y \\ $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
34 V
51 34 233 11 5 15 57 50 279 6 20 27 23 187 98 118 59 10 13
$\begin{array}{cccc} 13 \rightarrow & 13 \text{ Ave } \& 27 \text{ St} & \leftarrow & 15 \\ 16 & \lor & V_{BG,20} \cdot \text{PM} & \swarrow & 54 \end{array}$
12 140 70

20 Year Development Volumes - AM Peak Hour	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	4 41 \rightarrow Hwy 14 & Hwy 41 \leftarrow 64
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
20 Year Development Volumes - PM Peak Hour	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	98 112 59
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	

Acheson Industrial Park Trip Generation Rates

Screenline Volumes:

	AM - In	AM - Out	AM - Total	PM - IN	PM - OUT	PM - Total
1	235 trips	305 trips	540 trips	111 trips	471 trips	582 trips
2	422 trips	10 trips	432 trips	48 trips	100 trips	148 trips
Sum	657 trips	315 trips	972 trips	159 trips	571 trips	730 trips

Acheson Industrial Park Trip Generation Rates:

	AM - In	AM - Out	AM - Total	PM - IN	PM - OUT	PM - Total
1	1.08 trips/ha	1.41 trips/ha	2.49 trips/ha	0.51 trips/ha	2.17 trips/ha	2.68 trips/ha
2	1.95 trips/ha	0.05 trips/ha	1.99 trips/ha	0.22 trips/ha	0.46 trips/ha	0.68 trips/ha
Sum	3.03 trips/ha	1.45 trips/ha	4.48 trips/ha	0.73 trips/ha	2.63 trips/ha	3.37 trips/ha

Acheson Industrial Rates

AM Inbound	3.03 trips/ha														
AM Outbound	1.45 trips/ha														
PM Inbound	0.73 trips/ha														
PM Outbound	2.63 trips/ha		Rural Rate	0.7			F	Rural Rate	0.6						
	R	ural Rate (Ligh	it Industrial)	1		Rural Rate	(Light	Industrial)	1						
Land Use	Area	GFA	FAR		Al	M Peak Hou				P٨	1 Peak Ho	ur		Source	
	(m²)	(sq. ft)	FAR	Trip Rate		nbound	Out	bound	Trip Rate	In	bound	Ou	tbound	Source	
Existing Industrial Park	459096	45.9 ha				139 trips		67 trips			34 trips		121 trips		
Ford Dealership	2450	26,375		1.30	73%	25 trips	27%	9 trips	1.45	40%	15 trips	60%		ITE LUC 840	
McDonald's	381	4,097		26.58	51%	55 trips	49%	53 trips	21.15	52%	45 trips	48%	42 trips	C-TEP	
Car & Truck Wash		7 stalls		3.88	63%	17 trips	37%	10 trips	3.32	49%	11 trips	51%	12 trips	ITE LUC 947	
Veterinary Medical Center of Eastern Alberta	708	7,622		2.55	67%	13 trips	33%	6 trips	2.12	40%	6 trips	60%	10 trips	ITE LUC 640	
Agriculture Financial Service Corporation	1923	20,699		1.02	93%	20 trips	7%	1 trips	0.78	9%	1 trips	91%	15 trips	ITE LUC 714	
Hall & Company, Chartered Professional Accountants	572	6,158		1.30	88%	7 trips	12%	1 trips	1.06	15%	1 trips	85%	6 trips	ITE LUC 710	
Mark's	1316	14,162		0.70	80%	8 trips	20%	2 trips	2.47	51%	18 trips	49%	17 trips	ITE LUC 876	
A&W	220	2,372		26.58	51%	32 trips	49%	31 trips	21.15	52%	26 trips	48%	24 trips		
Ramada by Wyndham Wainwright		83 rooms		0.36	56%	17 trips	44%	13 trips	0.33	51%	14 trips	49%	13 trips	C-TEP	
The Brick	2377	25,583		0.18	71%	3 trips	29%	1 trips	0.31	47%	4 trips	53%	4 trips	ITE LUC 890	
Co-op Food Store	3364	36,210		2.00	59%	43 trips	41%	30 trips	5.37	50%	97 trips	50%	97 trips	ITE LUC 850	
Cornerstone Co-op Gas Bar Wainwright		10 pumps		3.60	50%	18 trips	50%	18 trips	4.18	50%	21 trips	50%	21 trips	ITE LUC 944	
Cornerstone Co-op Liquor Wainwright	503	5,414		0.21	79%	1 trips	21%	0 trips	4.99	50%	13 trips	50%	13 trips	ITE LUC 899	
Co-op Home & Agro Centre	1369	14,736		1.11	62%	10 trips	38%	6 trips	1.35	46%	9 trips	54%	11 trips	ITE LUC 812	
Co-op Cardlock		7 pumps		9.78	50%	34 trips	50%	34 trips	9.25	50%	32 trips	50%	32 trips	ITE LUC 950	
Denwood Motors	1273	13,698		1.30	73%	13 trips	27%	5 trips	1.45	40%	8 trips	60%		ITE LUC 840	
Springs Motor Inn		39 rooms		0.22	37%	3 trips	63%	5 trips	0.20	54%	4 trips	46%	4 trips	C-TEP	
Midwest Auto Supply Wainwright	337	3,633		1.76	55%	4 trips	45%	3 trips	2.94	48%	5 trips	52%	6 trips	ITE LUC 843	
Days Inn by Wyndham Wainwright		48 rooms		0.22	53%	6 trips	47%	5 trips	0.20	49%	5 trips	51%	5 trips	C-TEP	
Willerton Ski-Doo & Golf Cart LTD	489	5,259		0.32	85%	1 trips	15%	0 trips	0.46	31%	1 trips	69%	2 trips	ITE LUC 842	
1979 Sports Bar & Grill	463	4,983		7.36	55%	20 trips	45%	16 trips	5.63	61%	17 trips	39%	11 trips	C-TEP	
NAPA Auto Parts - Ignite Distribution Ltd	742	7,982		1.76	55%	8 trips	45%	6 trips	2.94	48%	11 trips	52%	12 trips	ITE LUC 843	
Total					4	97 trips		2 trips		39	8 trips		3 trips		
						819 t	rips				911	trips			

	Acheson	Traffic Counts	Factor
AM Inbound	497 trips	511 trips	1.03
AM Outbound	322 trips	348 trips	1.08
PM Inbound	398 trips	390 trips	0.98
PM Outbound	513 trips	531 trips	1.04
Total	1730 trips	1780 trips	

Area of HWY commercial	24.72	ha
HWY commercial AM Inbound Trip Rate	14.5	trips/ha
HWY commercial AM Outbound Trip Rate	10.3	trips/ha
HWY commercial PM Inbound Trip Rate	14.7	trips/ha
HWY commercial PM Outbound Trip Rate	15.9	trips/ha
HWY commercial PM Outbound Trip Rate	15.9	trips/na

Trip Generation - AM (20-year) (including Dollarama & RIRO)

AM Outbound Trip Generation

Lot	Area	Trip Rate	Outbound Trips	Outbound Trips
A2	1.3 ha	10.3 trips/ha	14 vph	
A4	3.5 ha	10.3 trips/ha	36 vph	80 vph
A5	2.9 ha	10.3 trips/ha	30 vph	
B6	3.4 ha	10.3 trips/ha	35 vph	
B7	4.6 ha	10.3 trips/ha	47 vph	111 vph
B8	2.8 ha	10.3 trips/ha	29 vph	
C19	2.3 ha	10.3 trips/ha	24 vph	24 vph
D17	4.3 ha	1.5 trips/ha	6 vph	10 vph
D18	3.1 ha	1.5 trips/ha	4 vph	io vpri
E9	2.7 ha	10.3 trips/ha	28 vph	
E14	2.8 ha	1.5 trips/ha	4 vph	38 vph
E16	4.3 ha	1.5 trips/ha	6 vph	
F15	11.1 ha	1.5 trips/ha	16 vph	16 vph
G33	20.4 ha	1.5 trips/ha	30 vph	75 vph
G34	30.7 ha	1.5 trips/ha	45 vph	75 vpn
H10	1.0 ha	10.3 trips/ha	11 vph	
H11	5.6 ha	10.3 trips/ha	58 vph	151 vph
H12	6.8 ha	10.3 trips/ha	70 vph	
H13	8.4 ha	1.5 trips/ha	12 vph	
	122.0 ha		505 trips	505 trips

122.0 ha

AM Inbound Trip Generation

Lot	Area	Trip Rate	Inbound Trips	Inbound Trips
A2	1.3 ha	14.5 trips/ha	19 vph	
A4	3.5 ha	14.5 trips/ha	51 vph	112 vph
A5	2.9 ha	14.5 trips/ha	42 vph	
B6	3.4 ha	14.5 trips/ha	50 vph	
B7	4.6 ha	14.5 trips/ha	66 vph	157 vph
B8	2.8 ha	14.5 trips/ha	41 vph	
C19	2.3 ha	14.5 trips/ha	33 vph	33 vph
D17	4.3 ha	3.0 trips/ha	13 vph	22 yrph
D18	3.1 ha	3.0 trips/ha	9 vph	22 vph
E9	2.7 ha	14.5 trips/ha	39 vph	
E14	2.8 ha	3.0 trips/ha	8 vph	60 vph
E16	4.3 ha	3.0 trips/ha	13 vph	
F15	11.1 ha	3.0 trips/ha	34 vph	34 vph
G33	20.4 ha	3.0 trips/ha	62 vph	155 vph
G34	30.7 ha	3.0 trips/ha	93 vph	155 vpn
H10	1.0 ha	14.5 trips/ha	15 vph	
H11	5.6 ha	14.5 trips/ha	81 vph	219 vph
H12	6.8 ha	14.5 trips/ha	98 vph	ZIƏ VPN
H13	8.4 ha	3.0 trips/ha	25 vph	
	122.0 ha		792 trips	792 trips

Area 1219807 m2 Area diff. 150173 m2

,	AM		Externa	l Zones				Wa	inwright Zc	ones			
Zone	Outbound	H14 West	H41N	H41E	H41S	R1	R2	R3	R4	R5	R6	R7	
20116	Trips	16%	6%	12%	7%	4%	5%	13%	9%	9%	12%	7%	
А	80 vph	13 vph	5 vph	10 vph	5 vph	4 vph	4 vph	11 vph	7 vph	7 vph	10 vph	6 vph	
В	111 vph	18 vph	6 vph	14 vph	8 vph	5 vph	5 vph	15 vph	10 vph	10 vph	14 vph	8 vph	
С	24 vph	4 vph	1 vph	3 vph	2 vph	1 vph	1 vph	3 vph	2 vph	2 vph	3 vph	2 vph	
D	10 vph	2 vph	1 vph	1 vph	1 vph	0 vph	0 vph	1 vph	1 vph	1 vph	1 vph	1 vph	
E	38 vph	6 vph	2 vph	5 vph	3 vph	2 vph	2 vph	5 vph	3 vph	3 vph	5 vph	3 vph	
F	16 vph	3 vph	1 vph	2 vph	1 vph	1 vph	1 vph	2 vph	1 vph	1 vph	2 vph	1 vph	
G	75 vph	12 vph	4 vph	9 vph	5 vph	3 vph	3 vph	10 vph	6 vph	7 vph	9 vph	5 vph	
Н	151 vph	25 vph	9 vph	18 vph	10 vph	7 vph	7 vph	20 vph	13 vph	13 vph	18 vph	10 vph	
	505 trips	83 trips	29 trips	62 trips	35 trips	23 trips	23 trips	67 trips	43 trips	44 trips	62 trips	36 trips	5

,	AM		Externa	l Zones				Wa	inwright Zc	ones			
Zone	Inbound	H14 West	H41N	H41E	H41S	R1	R2	R3	R4	R5	R6	R7	
ZONE	Trips	19%	5%	11%	5%	5%	5%	14%	9%	9%	12%	7%	10
А	112 vph	18 vph	6 vph	14 vph	8 vph	5 vph	5 vph	15 vph	10 vph	10 vph	14 vph	8 vph	113
В	157 vph	26 vph	9 vph	19 vph	11 vph	7 vph	7 vph	21 vph	14 vph	14 vph	19 vph	11 vph	158
С	33 vph	5 vph	2 vph	4 vph	2 vph	1 vph	2 vph	4 vph	3 vph	3 vph	4 vph	2 vph	32
D	22 vph	4 vph	1 vph	3 vph	2 vph	1 vph	1 vph	3 vph	2 vph	2 vph	3 vph	2 vph	24
E	60 vph	10 vph	3 vph	7 vph	4 vph	3 vph	3 vph	8 vph	5 vph	5 vph	7 vph	4 vph	59
F	34 vph	6 vph	2 vph	4 vph	2 vph	2 vph	2 vph	5 vph	3 vph	3 vph	4 vph	2 vph	35
G	155 vph	25 vph	9 vph	19 vph	11 vph	7 vph	7 vph	21 vph	13 vph	14 vph	19 vph	11 vph	156
H	219 vph	36 vph	12 vph	27 vph	15 vph	10 vph	10 vph	29 vph	19 vph	19 vph	27 vph	15 vph	219
	792 trips	130 trips	44 trips	97 trips	55 trips	36 trips	37 trips	106 trips	69 trips	70 trips	97 trips	55 trips	797

Trip Generation - PM (20-year) (including Dollarama & RIRO)

PM Outbound Trip Generation

Lot	Area	Trip Rate	Outbound Trips	Outbound Trips
A2	1.3 ha	15.9 trips/ha	20.9 vph	
A4	3.5 ha	15.9 trips/ha	55.5 vph	122 vph
A5	2.9 ha	15.9 trips/ha	45.6 vph	
B6	3.4 ha	15.9 trips/ha	54.2 vph	
B7	4.6 ha	15.9 trips/ha	72.6 vph	171 vph
B8	2.8 ha	15.9 trips/ha	44.6 vph	
C19	2.3 ha	15.9 trips/ha	36.1 vph	36 vph
D17	4.3 ha	2.6 trips/ha	11.2 vph	19 vph
D18	3.1 ha	2.6 trips/ha	8.1 vph	19 vpn
E9	2.7 ha	15.9 trips/ha	42.5 vph	
E14	2.8 ha	2.6 trips/ha	7.4 vph	61 vph
E16	4.3 ha	2.6 trips/ha	11.2 vph	
F15	11.1 ha	2.6 trips/ha	29.3 vph	29 vph
G33	20.4 ha	2.6 trips/ha	53.8 vph	135 vph
G34	30.7 ha	2.6 trips/ha	80.8 vph	155 vpri
H10	1.0 ha	15.9 trips/ha	16.4 vph	
H11	5.6 ha	15.9 trips/ha	89.2 vph	235 vph
H12	6.8 ha	15.9 trips/ha	107.2 vph	235 VPH
H13	8.4 ha	2.6 trips/ha	22.0 vph	
	122.0 ha		809 trips	809 trips

PM Inbound Trip Generation

Lot	Area	Trip Rate	Inbound Trips	Inbound Trips
A2	1.3 ha	14.7 trips/ha	19.4 vph	
A4	3.5 ha	14.7 trips/ha	51.6 vph	113 vph
A5	2.9 ha	14.7 trips/ha	42.4 vph	
B6	3.4 ha	14.7 trips/ha	50.4 vph	
B7	4.6 ha	14.7 trips/ha	67.4 vph	159 vph
B8	2.8 ha	14.7 trips/ha	41.4 vph	
C19	2.3 ha	14.7 trips/ha	33.6 vph	34 vph
D17	4.3 ha	0.7 trips/ha	3.1 vph	5 vph
D18	3.1 ha	0.7 trips/ha	2.2 vph	5 vpn
E9	2.7 ha	14.7 trips/ha	39.4 vph	
E14	2.8 ha	0.7 trips/ha	2.0 vph	45 vph
E16	4.3 ha	0.7 trips/ha	3.1 vph	
F15	11.1 ha	0.7 trips/ha	8.1 vph	8 vph
G33	20.4 ha	0.7 trips/ha	14.9 vph	37 vph
G34	30.7 ha	0.7 trips/ha	22.4 vph	S7 vpri
H10	1.0 ha	14.7 trips/ha	15.3 vph	
H11	5.6 ha	14.7 trips/ha	82.8 vph	201 yrph
H12	6.8 ha	14.7 trips/ha	99.5 vph	204 vph
H13	8.4 ha	0.7 trips/ha	6.1 vph	
	122.0 ha		605 trips	605 trips

Area 1219807 m2 Area diff. 150173 m2

	PM		Externa	al Zones				Wa	inwright Zc	nes			
Zone	Outbound	H14 West	H41N	H41E	H41S	R1	R2	R3	R4	R5	R6	R7	
Zone	Trips	21%	5%	18%	9%	3%	4%	11%	7%	7%	10%	5%	100
А	122 vph	26 vph	6 vph	22 vph	11 vph	4 vph	4 vph	13 vph	8 vph	8 vph	12 vph	7 vph	121 \
В	171 vph	36 vph	9 vph	31 vph	16 vph	6 vph	6 vph	18 vph	12 vph	12 vph	16 vph	9 vph	171 \
С	36 vph	8 vph	2 vph	7 vph	3 vph	1 vph	1 vph	4 vph	2 vph	3 vph	3 vph	2 vph	36 \
D	19 vph	4 vph	1 vph	4 vph	2 vph	1 vph	1 vph	2 vph	1 vph	1 vph	2 vph	1 vph	20 \
E	61 vph	13 vph	3 vph	11 vph	6 vph	2 vph	2 vph	6 vph	4 vph	4 vph	6 vph	3 vph	60 \
F	29 vph	6 vph	2 vph	5 vph	3 vph	1 vph	1 vph	3 vph	2 vph	2 vph	3 vph	2 vph	30 v
G	135 vph	28 vph	7 vph	25 vph	12 vph	5 vph	5 vph	14 vph	9 vph	9 vph	13 vph	7 vph	134
Η	235 vph	49 vph	12 vph	43 vph	22 vph	8 vph	8 vph	25 vph	16 vph	16 vph	22 vph	13 vph	234
	809 trips	170 trips	42 trips	148 trips	75 trips	28 trips	28 trips	85 trips	54 trips	55 trips	77 trips	44 trips	807

	PM		Externa	al Zones				Wa	inwright Zc	nes			
Zone	Inbound	H14 West	H41N	H41E	H41S	R1	R2	R3	R4	R5	R6	R7	
Zone	Trips	7%	2%	8%	3%	6%	6%	18%	12%	12%	16%	9%	100%
A	113 vph	24 vph	6 vph	21 vph	10 vph	4 vph	4 vph	12 vph	8 vph	8 vph	11 vph	6 vph	114 vph
В	159 vph	33 vph	8 vph	29 vph	15 vph	6 vph	6 vph	17 vph	11 vph	11 vph	15 vph	9 vph	160 vph
С	34 vph	7 vph	2 vph	6 vph	3 vph	1 vph	1 vph	4 vph	2 vph	2 vph	3 vph	2 vph	33 vph
D	5 vph	1 vph	0 vph	1 vph	0 vph	0 vph	0 vph	1 vph	0 vph	0 vph	1 vph	0 vph	4 vph
E	45 vph	9 vph	2 vph	8 vph	4 vph	2 vph	2 vph	5 vph	3 vph	3 vph	4 vph	2 vph	44 vph
F	8 vph	2 vph	0 vph	1 vph	1 vph	0 vph	0 vph	1 vph	1 vph	1 vph	1 vph	0 vph	8 vph
G	37 vph	8 vph	2 vph	7 vph	3 vph	1 vph	1 vph	4 vph	3 vph	3 vph	4 vph	2 vph	38 vph
H	204 vph	43 vph	11 vph	37 vph	19 vph	7 vph	7 vph	22 vph	14 vph	14 vph	19 vph	11 vph	204 vph
	605 trips	127 trips	31 trips	110 trips	55 trips	21 trips	21 trips	66 trips	42 trips	42 trips	58 trips	32 trips	606 trips

Trip Generation - AM - 20-year (including Dollarama & without RIRO)

AM Outbound Trip Generation

Lot	Area	Trip Rate	Outbound Trips	Outbound Trips
A2	1.3 ha	10.3 trips/ha	14 vph	
A4	3.5 ha	10.3 trips/ha	36 vph	80 vph
A5	2.9 ha	10.3 trips/ha	30 vph	
B6	3.4 ha	10.3 trips/ha	35 vph	
B7	4.6 ha	10.3 trips/ha	47 vph	111 vph
B8	2.8 ha	10.3 trips/ha	29 vph	
C19	2.3 ha	10.3 trips/ha	24 vph	24 vph
D17	4.3 ha	1.5 trips/ha	6 vph	10 vph
D18	3.1 ha	1.5 trips/ha	4 vph	io vpn
E9	2.7 ha	10.3 trips/ha	28 vph	
E14	2.8 ha	1.5 trips/ha	4 vph	38 vph
E16	4.3 ha	1.5 trips/ha	6 vph	
F15	11.1 ha	1.5 trips/ha	16 vph	16 vph
G33	20.4 ha	1.5 trips/ha	30 vph	75 vph
G34	30.7 ha	1.5 trips/ha	45 vph	75 vpn
H10	1.0 ha	10.3 trips/ha	11 vph	
H11	5.6 ha	10.3 trips/ha	58 vph	151 yph
H12	6.8 ha	10.3 trips/ha	70 vph	151 vph
H13	8.4 ha	1.5 trips/ha	12 vph	
	122.0 ha		505 trips	505 trips

AM Inbound Trip Generation

Lot	Area	Trip Rate	Inbound Trips	Inbound Trips
A2	1.3 ha	14.5 trips/ha	19 vph	
A4	3.5 ha	14.5 trips/ha	51 vph	112 vph
A5	2.9 ha	14.5 trips/ha	42 vph	
B6	3.4 ha	14.5 trips/ha	50 vph	
B7	4.6 ha	14.5 trips/ha	66 vph	157 vph
B8	2.8 ha	14.5 trips/ha	41 vph	
C19	2.3 ha	14.5 trips/ha	33 vph	33 vph
D17	4.3 ha	3.0 trips/ha	13 vph	22 vph
D18	3.1 ha	3.0 trips/ha	9 vph	22 VpH
E9	2.7 ha	14.5 trips/ha	39 vph	
E14	2.8 ha	3.0 trips/ha	8 vph	60 vph
E16	4.3 ha	3.0 trips/ha	13 vph	
F15	11.1 ha	3.0 trips/ha	34 vph	34 vph
G33	20.4 ha	3.0 trips/ha	62 vph	155 vph
G34	30.7 ha	3.0 trips/ha	93 vph	155 vp11
H1O	1.0 ha	14.5 trips/ha	15 vph	
H11	5.6 ha	14.5 trips/ha	81 vph	219 vph
H12	6.8 ha	14.5 trips/ha	98 vph	219 (01)
H13	8.4 ha	3.0 trips/ha	25 vph	
	122.0 ha		792 trips	792 trips

Area 1219807 m2 Area diff. 150173 m2

150173 m2

	AM	External Zones Wainwright Zones											
Zone	Outbound	H14 West	H41N	H41E	H41S	R1	R2	R3	R4	R5	R6	R7	
20116	Trips	16%	6%	12%	7%	4%	5%	13%	9%	9%	12%	7%	100
A	80 vph	13 vph	5 vph	10 vph	5 vph	4 vph	4 vph	11 vph	7 vph	7 vph	10 vph	6 vph	82 1
В	111 vph	18 vph	6 vph	14 vph	8 vph	5 vph	5 vph	15 vph	10 vph	10 vph	14 vph	8 vph	113
С	24 vph	4 vph	1 vph	3 vph	2 vph	1 vph	1 vph	3 vph	2 vph	2 vph	3 vph	2 vph	24
D	10 vph	2 vph	1 vph	1 vph	1 vph	0 vph	0 vph	1 vph	10 v				
E	38 vph	6 vph	2 vph	5 vph	3 vph	2 vph	2 vph	5 vph	3 vph	3 vph	5 vph	3 vph	39
F	16 vph	3 vph	1 vph	2 vph	1 vph	1 vph	1 vph	2 vph	1 vph	1 vph	2 vph	1 vph	16 v
G	75 vph	12 vph	4 vph	9 vph	5 vph	3 vph	3 vph	10 vph	6 vph	7 vph	9 vph	5 vph	73 '
Н	151 vph	25 vph	9 vph	18 vph	10 vph	7 vph	7 vph	20 vph	13 vph	13 vph	18 vph	10 vph	150
	505 trips	83 trips	29 trips	62 trips	35 trips	23 trips	23 trips	67 trips	43 trips	44 trips	62 trips	36 trips	508

/	M External Zones				Wainwright Zones								
Zone	Inbound	H14 West	H41N	H41E	H41S	R1	R2	R3	R4	R5	R6	R7	
Zone	Trips	19%	5%	11%	5%	5%	5%	14%	9%	9%	12%	7%	100%
А	112 vph	18 vph	6 vph	14 vph	8 vph	5 vph	5 vph	15 vph	10 vph	10 vph	14 vph	8 vph	113 vph
В	157 vph	26 vph	9 vph	19 vph	11 vph	7 vph	7 vph	21 vph	14 vph	14 vph	19 vph	11 vph	158 vph
С	33 vph	5 vph	2 vph	4 vph	2 vph	1 vph	2 vph	4 vph	3 vph	3 vph	4 vph	2 vph	32 vph
D	22 vph	4 vph	1 vph	3 vph	2 vph	1 vph	1 vph	3 vph	2 vph	2 vph	3 vph	2 vph	24 vph
Е	60 vph	10 vph	3 vph	7 vph	4 vph	3 vph	3 vph	8 vph	5 vph	5 vph	7 vph	4 vph	59 vph
F	34 vph	6 vph	2 vph	4 vph	2 vph	2 vph	2 vph	5 vph	3 vph	3 vph	4 vph	2 vph	35 vph
G	155 vph	25 vph	9 vph	19 vph	11 vph	7 vph	7 vph	21 vph	13 vph	14 vph	19 vph	11 vph	156 vph
Н	219 vph	36 vph	12 vph	27 vph	15 vph	10 vph	10 vph	29 vph	19 vph	19 vph	27 vph	15 vph	219 vph
	792 trips	130 trips	44 trips	97 trips	55 trips	36 trips	37 trips	106 trips	69 trips	70 trips	97 trips	55 trips	797 trips

O:\4022001 Wainwright TIA\4 - Synchro\5 - HWY 14\20-year - including Dollarama\Wainwright TMV Summary - (including Dollarama & without RIRO) - 20-year TG-AM

Trip Generation - PM - 20-year (including Dollarama & without RIRO)

PM Outbound Trip Generation

Outbound Outbound Lot Trip Rate Area Trips Trips 20.9 vph A2 1.3 ha 15.9 trips/ha A4 3.5 ha 15.9 trips/ha 55.5 vph 122 vph A5 2.9 ha 15.9 trips/ha 45.6 vph В6 3.4 ha 15.9 trips/ha 54.2 vph 171 vph Β7 4.6 ha 15.9 trips/ha 72.6 vph 2.8 ha 15.9 trips/ha 44.6 vph B8 C19 2.3 ha 15.9 trips/ha 36.1 vph 36 vph D17 4.3 ha 2.6 trips/ha 11.2 vph 19 vph D18 3.1 ha 2.6 trips/ha 8.1 vph E9 2.7 ha 15.9 trips/ha 42.5 vph E14 2.8 ha 2.6 trips/ha 7.4 vph 61 vph 11.2 vph E16 4.3 ha 2.6 trips/ha F15 11.1 ha 2.6 trips/ha 29.3 vph 29 vph G33 20.4 ha 2.6 trips/ha 53.8 vph 135 vph G34 30.7 ha 2.6 trips/ha 80.8 vph H10 1.0 ha 15.9 trips/ha 16.4 vph H11 5.6 ha 15.9 trips/ha 89.2 vph 235 vph H12 6.8 ha 15.9 trips/ha 107.2 vph 22.0 vph H13 8.4 ha 2.6 trips/ha 809 trips 809 trips 122.0 ha

PM Inbound Trip Generation

Lot	Area	Trip Rate	Inbound Trips	Inbound Trips
A2	1.3 ha	14.7 trips/ha	19.4 vph	
A4	3.5 ha	14.7 trips/ha	51.6 vph	113 vph
A5	2.9 ha	14.7 trips/ha	42.4 vph	
B6	3.4 ha	14.7 trips/ha	50.4 vph	
B7	4.6 ha	14.7 trips/ha	67.4 vph	159 vph
B8	2.8 ha	14.7 trips/ha	41.4 vph	
C19	2.3 ha	14.7 trips/ha	33.6 vph	34 vph
D17	4.3 ha	0.7 trips/ha	3.1 vph	5 vph
D18	3.1 ha	0.7 trips/ha	2.2 vph	5 vpn
E9	2.7 ha	14.7 trips/ha	39.4 vph	
E14	2.8 ha	0.7 trips/ha	2.0 vph	45 vph
E16	4.3 ha	0.7 trips/ha	3.1 vph	
F15	11.1 ha	0.7 trips/ha	8.1 vph	8 vph
G33	20.4 ha	0.7 trips/ha	14.9 vph	37 vph
G34	30.7 ha	0.7 trips/ha	22.4 vph	37 vpri
H1O	1.0 ha	14.7 trips/ha	15.3 vph	
H11	5.6 ha	14.7 trips/ha	82.8 vph	204 vph
H12	6.8 ha	14.7 trips/ha	99.5 vph	204 vpn
H13	8.4 ha	0.7 trips/ha	6.1 vph	
	122.0 ha		605 trips	605 trips

Area 1219807 m2 Area diff. 150173 m2

	PM		Externa	al Zones		Wainwright Zones							
Zone	Outbound	H14 West	H41N	H41E	H41S	R1	R2	R3	R4	R5	R6	R7	
ZONE	Trips	21%	5%	18%	9%	3%	4%	11%	7%	7%	10%	5%	10
А	122 vph	26 vph	6 vph	22 vph	11 vph	4 vph	4 vph	13 vph	8 vph	8 vph	12 vph	7 vph	121
В	171 vph	36 vph	9 vph	31 vph	16 vph	6 vph	6 vph	18 vph	12 vph	12 vph	16 vph	9 vph	17
С	36 vph	8 vph	2 vph	7 vph	3 vph	1 vph	1 vph	4 vph	2 vph	3 vph	3 vph	2 vph	36
D	19 vph	4 vph	1 vph	4 vph	2 vph	1 vph	1 vph	2 vph	1 vph	1 vph	2 vph	1 vph	20
E	61 vph	13 vph	3 vph	11 vph	6 vph	2 vph	2 vph	6 vph	4 vph	4 vph	6 vph	3 vph	60
F	29 vph	6 vph	2 vph	5 vph	3 vph	1 vph	1 vph	3 vph	2 vph	2 vph	3 vph	2 vph	30
G	135 vph	28 vph	7 vph	25 vph	12 vph	5 vph	5 vph	14 vph	9 vph	9 vph	13 vph	7 vph	134
Н	235 vph	49 vph	12 vph	43 vph	22 vph	8 vph	8 vph	25 vph	16 vph	16 vph	22 vph	13 vph	23
	809 trips	170 trips	42 trips	148 trips	75 trips	28 trips	28 trips	85 trips	54 trips	55 trips	77 trips	44 trips	807

	PM		Externa	al Zones		Wainwright Zones							
Zone	Inbound	H14 West	H41N	H41E	H41S	R1	R2	R3	R4	R5	R6	R7	
Zone	Trips	7%	2%	8%	3%	6%	6%	18%	12%	12%	16%	9%	100%
А	113 vph	24 vph	6 vph	21 vph	10 vph	4 vph	4 vph	12 vph	8 vph	8 vph	11 vph	6 vph	114 vph
В	159 vph	33 vph	8 vph	29 vph	15 vph	6 vph	6 vph	17 vph	11 vph	11 vph	15 vph	9 vph	160 vph
С	34 vph	7 vph	2 vph	6 vph	3 vph	1 vph	1 vph	4 vph	2 vph	2 vph	3 vph	2 vph	33 vph
D	5 vph	1 vph	0 vph	1 vph	0 vph	0 vph	0 vph	1 vph	0 vph	0 vph	1 vph	0 vph	4 vph
E	45 vph	9 vph	2 vph	8 vph	4 vph	2 vph	2 vph	5 vph	3 vph	3 vph	4 vph	2 vph	44 vph
F	8 vph	2 vph	0 vph	1 vph	1 vph	0 vph	0 vph	1 vph	1 vph	1 vph	1 vph	0 vph	8 vph
G	37 vph	8 vph	2 vph	7 vph	3 vph	1 vph	1 vph	4 vph	3 vph	3 vph	4 vph	2 vph	38 vph
Н	204 vph	43 vph	11 vph	37 vph	19 vph	7 vph	7 vph	22 vph	14 vph	14 vph	19 vph	11 vph	204 vph
	605 trips	127 trips	31 trips	110 trips	55 trips	21 trips	21 trips	66 trips	42 trips	42 trips	58 trips	32 trips	606 trips

This page intentionally left blank

0

Η

64

g

5

110

SB

v

31

RT

0

Ped2

37

5

124

SB

v

0

Η

72

Яĝ

35

RT

0

Ped2

Яĝ

This page intentionally left blank

				H	CS Ro	oun	dab	out	ts Rep	oort								
General Information							S	ite	Infor	matio	n		_			_		
Analyst	Inviste	c Consi	ulting	Ltd.			*			Inter	section		_			_		
Agency or Co.	Town	of Wain	wright				+	~		E/W	Street N	ame			Hwy 14			
Date Performed	12/23/	2024				1			+	N/S	Street N	ame		-	1 St			
Analysis Year	2043						W + E		1 >	Anal	ysis Time	e Period,	hrs		1.00			
Time Analyzed	AM Pe	ak Hou	r		*					Peak	Hour Fa	ctor		(0.70			
Project Description	Wainw	right Ti	raffic S	tudy			→ ▼	*		Juris	diction			-	TEC			
Volume Adjustments	and Si	te Cł	nara	cterist	ics													
Approach		E	B				WB					NB				:	SB	
Movement	U	L	Т	R	U	Т	L	Т	R	U	L	Т		R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0		0	1	0	0	0	1		0	0	0	1	0
Lane Assignment	<u> </u>			LTR				L	LTR				TR					LTR
Volume (V), veh/h	0	8	274	90	0	1	62	219	43	0	12	29	1	02	0	48	20	5
Percent Heavy Vehicles, %	0						5	5	5	0	5	5	Γ	5	0	5	5	5
Flow Rate (VPCE), pc/h	0	12	411	135	0	2	43	329	64	0	18	44	1	53	0	72	30	8
Right-Turn Bypass		None					None	9			N	one				N	one	
Conflicting Lanes			1				1					1					1	
Pedestrians Crossing, p/h		0					0					0					0	
Proportion of CAVs, %							0											
Critical and Follow-U	p Head	lway	Adj	ustme	nt													
Approach		E	B				WB	_				NB	_			:	SB	
Lane	Left	Ri	ght Bypass		Le	ft	Right	:	Bypass	Left	R	ight	Вура	ass	Left	Ri	ght	Bypass
Critical Headway, s		4.9	763				4.976	3			4.9	9763				4.9	9763	
Follow-Up Headway, s		2.6	087				2.608	7			2.	5087				2.6	5087	
Flow Computations,	Capaci	ty an	d v/	c Ratio)S													
Approach		E	B				WB					NB				:	SB	
Lane	Left	Ri	ght	Bypass	Le	ft	Right	:	Bypass	Left	R	ight	Вура	ass	Left	Ri	ght	Bypass
Entry Flow (ve), pc/h		5	58				636	T			Ĩ	15				1	10	
Entry Volume, veh/h		5	31				606				ĩ	205				1	05	
Circulating Flow (vc), pc/h		3	45				74					195				5	90	
Exiting Flow (vex), pc/h		6	36				355					20				4	08	
Capacity (c _{pce}), pc/h		9	71				1280				8	333				7	'56	
Capacity (c), veh/h		9	24				1219				7	/93				7	20	
v/c Ratio (x)		0.	.57				0.50				C	.26				0	.15	
Delay and Level of Se	ervice															-		
Approach	EB							_	WB			NE	;		<u> </u>	_	SB	
Lane			Left	Righ	nt By	pass	Left	Τ	Right	Bypass	Left	Rigi	nt	Bypass	Left		Right	Bypass
Lane Control Delay (d), s/veh				12.0)			T	8.3			7.4					6.6	
Lane LOS		В						А			A					А		
95% Queue Length, Q ₉₅ (veh)	i) 4.0						2.9			1.0					0.5			
95% Queue Length, Q ₉₅ (m)	31.70		0				22.98			7.9	2				3.96			
Approach Delay, s/veh LOS			1	2.0	В		8	.3		А	7.	4		A	6	5.6		А
Intersection Delay, s/veh LO	s					9.	.4								A			

				H	CS R	oun	ndab	oui	ts Re _l	port								
General Information							9	Site	Infor	matio	n			_			_	
Analyst	Inviste	c Consi	ulting l	Ltd.			*			Inter	section	_		Г	_			_
Agency or Co.	Town o	of Wain	wright				-			E/W	Street N	ame		н	lwy 14			
Date Performed	12/23/	2024							+	N/S	Street Na	ame		1	St			
Analysis Year	2043					ļ (W + S		† >	Anal	ysis Time	Period, I	nrs	1	.00			
Time Analyzed	PM Pe	ak Hou	r		*					Peak	Hour Fa	ctor		0	.70			
Project Description	Wainw	right Tr	affic S	tudy			$\overline{\mathbf{v}}$	*		Juris	diction			Т	EC			
Volume Adjustments	and Si	te Cł	narao	teristi	ics													
Approach		E	B				WB				1	٨B		Т		SB		
Movement	U	L	Т	R	U	Т	L	т	R	U	L	Т	R		U	L	Т	R
Number of Lanes (N)	0	0	1	0	0		0	1	0	0	0	1	0		0) –	1	0
Lane Assignment				LTR				I	LTR			Ľ	R	\top			Ľ	.TR
Volume (V), veh/h	0	5	212	34	0	T ·	78	291	42	0	51	34	251		0 3	1	14	5
Percent Heavy Vehicles, %	0	5	5	5	0		5	5	5	0	5	5	5		0	5	5	5
Flow Rate (VPCE), pc/h	0	8	318	51	0	1	17	437	63	0	77	51	377		0 4	7	21	8
Right-Turn Bypass	1	No	one				None	e			N	one		Ť		None		
Conflicting Lanes			1				1					1				1		
Pedestrians Crossing, p/h		0					0					0				0		
Proportion of CAVs, %							0											
Critical and Follow-L	nt																	
Approach		E	B				WB			Τ	1	١B		Τ		SB	_	
Lane	Left	Ri	ght Bypass		Le	ft	Righ	t	Bypass	Lef	: Ri	ght l	Bypass		Left	Right	Τ	Bypass
Critical Headway, s		4.9	763				4.976	3			4.9	763				4.9763		
Follow-Up Headway, s		2.6	087				2.608	37			2.6	5087				2.6087		
Flow Computations,	Capacit	ty an	d v/	c Ratio	os													
Approach		E	B				WB			T	1	NB		Т		SB		
Lane	Left	Ri	ght	Bypass	Le	ft	Righ	t	Bypass	Lef	: Ri	ght l	Bypass		Left	Right		Bypass
Entry Flow (ve), pc/h		3	77				617				5	05				76	T	
Entry Volume, veh/h		3	59				588				4	.81				72	+	
Circulating Flow (v _c), pc/h		1	85				136				3	73				631		
Exiting Flow (vex), pc/h		7	42				522				1	22				189		
Capacity (cpce), pc/h		11	43				1201	1			g	43				725	Т	
Capacity (c), veh/h		10	88				1144	1			8	98				691	T	
v/c Ratio (x)		0.	33				0.51				0	.54				0.10	T	
Delay and Level of S	ervice																	
Approach	EB				_				WB	_		NB	_			SB		_
Lane			Left	Righ	nt By	pass	Left		Right	Bypass	Left	Righ	: Byp	bass	Left	Rigl	nt	Bypass
Lane Control Delay (d), s/veh				6.6				1	9.0			11.3				6.3		
Lane LOS			A					+	A			В				A		
95% Queue Length, Q ₉₅ (veh)) 1.5					1	3.1			3.4				0.4				
95% Queue Length, Q ₉₅ (m)) 11.89		9			1	24.57			26.94				3.1	7			
Approach Delay, s/veh LOS			6	.6	A		9	9.0		A	11.	3	В		6.3	3		A
Intersection Delay, s/veh LO	S			_	9	.0							Å	4				

				HC	S Roi	inda	bou	ts Re	oort							
General Information							Site	Infor	matio	n						
Analyst	Inviste	c Consi	ulting l	_td.		+			Inter	section						
Agency or Co.	Town o	of Wain	wright			1.	-		E/W	Street Na	me		Hwy	14		
Date Performed	12/23/	2024			\Box			+	N/S S	Street Na	me		1 St			
Analysis Year	2043				▼ ↓	W	† Ε S) ↑ ≻	Analy	/sis Time	Period, hr	s	1.00			
Time Analyzed	AM Pe	ak Hou	r		*				Peak	Hour Fac	tor		0.70			
Project Description	Wainw	right Tr	affic S	tudy			→ ▼ *		Juriso	diction			TEC			
Volume Adjustments	and Si	te Cł	narao	teristi	cs	-										
Approach		E	B			V	VB			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	<u> </u>			LTR				LTR			LTF	t I		-		LTR
Volume (V), veh/h	0	10	329	108	0	194	263	52	0	14	35	122	0	58	24	6
Percent Heavy Vehicles, %	0	5	5	5	0	5	5	5	0	5	5	5	0	5	5	5
Flow Rate (VPCE), pc/h	0	15	494	162	0	291	395	78	0	21	52	183	0	87	36	9
Right-Turn Bypass		None					one			No	one				None	
Conflicting Lanes			1				1				1				1	
Pedestrians Crossing, p/h		0					0			()				0	
Proportion of CAVs, %									0			I				
Critical and Follow-U	p Head	lway	Adj	ustmer	nt											
Approach		E	B			V	VB			N	B				SB	
Lane	Left	Ri	ight Bypass		Left	Ri	ght	Bypass	Left	Rig	ght By	/pass	Left		Right	Bypass
Critical Headway, s		4.9	763			4.9	763			4.9	763			4	4.9763	
Follow-Up Headway, s		2.6	087			2.6	087			2.6	087			í	2.6087	
Flow Computations,	Capaci	ty an	d v/	c Ratio	s	_										
Approach		E	B			V	VB		T	N	B				SB	
Lane	Left	Rig	ght	Bypass	Left	Ri	ght	Bypass	Left	Rig	ght By	/pass	Left		Right	Bypass
Entry Flow (ve), pc/h		6	71			7	64			2!	56				132	
Entry Volume, veh/h		6	39			7	28			24	14				126	
Circulating Flow (vc), pc/h		4	14				38			59	96				707	
Exiting Flow (vex), pc/h		7	64			4	25			14	45				489	
Capacity (cpce), pc/h		9	05			12	262			7:	51			Τ	671	
Capacity (c), veh/h		8	62			12	201			7	16				639	
v/c Ratio (x)		0.	74			0.	.61			0.	34				0.20	
Delay and Level of S	ervice															
Approach	EB					Т	_	WB			NB	_	Т	_	SB	
Lane			Left	Righ	t Bypa	s L	eft	Right	Bypass	Left	Right	Вура	ss L	.eft	Right	Bypass
Lane Control Delay (d), s/veh				19.6				10.6			9.3				8.0	
Lane LOS			С					В			A				А	
95% Queue Length, Q ₉₅ (veh)	8.0						4.5			1.5				0.7		
95% Queue Length, Q ₉₅ (m)		63.40)			35.66			11.89				5.55		
Approach Delay, s/veh LOS			19	9.6	С		10.6		В	9.3		Α		8.0		A
Intersection Delay, s/veh LO	S					13.5							В			

				Н	CS	Rou	ndal	bou	ts Re	por	rt								
General Information					_			Site	e Infor	mat	tior	n					_		
Analyst	Inviste	c Cons	ulting l	Ltd.	Т		-			lı	nterse	ection			Т		_		
Agency or Co.	Town o	of Wain	wright	:			•	- ^		E	/W S	treet Na	me		F	lwy 14			
Date Performed	12/23/	2024				1					N/S St	treet Na	me		1	St			
Analysis Year	2043					┥ ↓	W		↑ ≽	A	Analys	sis Time	Period, ł	irs	1	.00			
Time Analyzed	PM Pea	ak Hou	r		l	÷				Р	Peak H	Hour Fac	tor		0	.70			
Project Description	Wainw	right Ti	raffic S	tudy			-	+		J	urisd	iction			Т	EC			
Volume Adjustments	and Si	te Cł	narao	cterist	ics	5	<u> Michellessa</u>		<u>.</u>										
Approach		E	EB		Т		W	/B		Т		N	В		Τ		S	В	
Movement	U	L	Т	R		U	L	Т	R		U	L	Т	R		U	L	Т	R
Number of Lanes (N)	0	0	1	0		0	0	1	0		0	0	1	0		0	0	1	0
Lane Assignment			LTR						LTR				LT	R					LTR
Volume (V), veh/h	0	6	254 41			0	94	349	50		0	61	41	301		0	37	17	6
Percent Heavy Vehicles, %	0	5	5	5	T	0	5	5	5		0	5	5	5		0	5	5	5
Flow Rate (VPCE), pc/h	0	9	381	62	T	0	141	524	75		0	92	62	452		0	56	26	9
Right-Turn Bypass		None					No	ne				No	ne				No	ne	
Conflicting Lanes			1		Ť		1	1				1	1				1		
Pedestrians Crossing, p/h		0					()				()				()	
Proportion of CAVs, %						0													
Critical and Follow-U	p Head	lway	Adj	ustme	ent														
Approach		E	EB		Т		W	/B		Τ		N	В		Τ		S	В	
Lane	Left	Ri	ght Bypass		5	Left	Rig	ght	Bypass		Left	Ric	ght E	Sypass		Left	Rig	jht	Bypass
Critical Headway, s		4.9	763				4.9	763				4.9	763				4.97	763	
Follow-Up Headway, s		2.6	6087				2.60	087				2.60	087				2.60	087	
Flow Computations,	Capacit	ty an	d v/	c Rati	os														
Approach		E	EB		Т		W	/B		Т		N	В		Τ		S	B	
Lane	Left	Ri	ght	Bypass	5	Left	Ric	ght	Bypass	+	Left	Ric	ght E	sypass		Left	Ric	jht	Bypass
Entry Flow (ve), pc/h		4	52		T		74	40				60)6				9	1	
Entry Volume, veh/h		4	30		╈		70)5				57	77				8	7	
Circulating Flow (v _c), pc/h		2	23		T		16	53				44	46				75	57	
Exiting Flow (vex), pc/h		8	89		\uparrow		62	25				14	16				22	29	
Capacity (cpce), pc/h		1(099		T		11	69				87	76				63	88	
Capacity (c), veh/h		1(047		+		11	13				83	34				60)7	
v/c Ratio (x)		0.	.41				0.0	63				0.0	69				0.1	14	
Delay and Level of S	ervice				_							_							
Approach	EB			В		T	_	WB	_			NB		_		_	SB		
Lane			Left	Rig	ht	Bypass	Le	ft	Right	Вура	ass	Left	Right	Ву	pass	Left	F	Right	Bypass
Lane Control Delay (d), s/veh				7.	9				11.9				17.3				T	7.6	
Lane LOS				A	١.				В				С				\uparrow	А	
95% Queue Length, Q ₉₅ (veh)) 2.1					5.1				6.4				T	0.5				
95% Queue Length, Q ₉₅ (m)	16.64		64				40.42				50.72					3.96			
Approach Delay, s/veh LOS			7	.9		A	1	11.9		В		17.3	3	С		7.	6		A
Intersection Delay, s/veh LO	OS						12.5								I	B			

HCS Analysis Results (Roundabouts, Highway 14 & 1 Street)

				H	CS Ro	oun	dab	out	ts Rep	oort								
General Information							S	ite	Infor	matio	n		_			_		
Analyst	Inviste	c Consi	ulting	Ltd.			*			Inter	section		_			_		
Agency or Co.	Town	of Wain	wright				+	~		E/W	Street N	ame			Hwy 14			
Date Performed	12/23/	2024				1			+	N/S	Street N	ame		-	1 St			
Analysis Year	2043						W + E		1 >	Anal	ysis Time	e Period,	hrs		1.00			
Time Analyzed	AM Pe	ak Hou	r		*					Peak	Hour Fa	ctor		(0.70			
Project Description	Wainw	right Ti	raffic S	tudy			→ ▼	*		Juris	diction			-	TEC			
Volume Adjustments	and Si	te Cł	nara	cterist	ics													
Approach		E	B				WB					NB				:	SB	
Movement	U	L	Т	R	U	Т	L	Т	R	U	L	Т		R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0		0	1	0	0	0	1		0	0	0	1	0
Lane Assignment	<u> </u>			LTR				L	LTR				TR					LTR
Volume (V), veh/h	0	8	274	90	0	1	62	219	43	0	12	29	1	02	0	48	20	5
Percent Heavy Vehicles, %	0						5	5	5	0	5	5	Γ	5	0	5	5	5
Flow Rate (VPCE), pc/h	0	12	411	135	0	2	43	329	64	0	18	44	1	53	0	72	30	8
Right-Turn Bypass		None					None	9			N	one				N	one	
Conflicting Lanes			1				1					1					1	
Pedestrians Crossing, p/h		0					0					0					0	
Proportion of CAVs, %							0											
Critical and Follow-U	p Head	lway	Adj	ustme	nt													
Approach		E	B				WB	_				NB	_			:	SB	
Lane	Left	Ri	ght Bypass		Le	ft	Right	:	Bypass	Left	R	ight	Вура	ass	Left	Ri	ght	Bypass
Critical Headway, s		4.9	763				4.976	3			4.9	9763				4.9	9763	
Follow-Up Headway, s		2.6	087				2.608	7			2.	5087				2.6	5087	
Flow Computations,	Capaci	ty an	d v/	c Ratio)S													
Approach		E	B				WB					NB				:	SB	
Lane	Left	Ri	ght	Bypass	Le	ft	Right	:	Bypass	Left	R	ight	Вура	ass	Left	Ri	ght	Bypass
Entry Flow (ve), pc/h		5	58				636	T			Ĩ	15				1	10	
Entry Volume, veh/h		5	31				606				ĩ	205				1	05	
Circulating Flow (vc), pc/h		3	45				74					195				5	90	
Exiting Flow (vex), pc/h		6	36				355					20				4	08	
Capacity (c _{pce}), pc/h		9	71				1280				8	333				7	'56	
Capacity (c), veh/h		9	24				1219				7	/93				7	20	
v/c Ratio (x)		0.	.57				0.50				C	.26				0	.15	
Delay and Level of Se	ervice															-		
Approach	EB							_	WB			NE	;		<u> </u>	_	SB	
Lane			Left	Righ	nt By	pass	Left	Τ	Right	Bypass	Left	Rigi	nt	Bypass	Left		Right	Bypass
Lane Control Delay (d), s/veh				12.0)			T	8.3			7.4					6.6	
Lane LOS		В						А			A					А		
95% Queue Length, Q ₉₅ (veh)	i) 4.0						2.9			1.0					0.5			
95% Queue Length, Q ₉₅ (m)	31.70		0				22.98			7.9	2				3.96			
Approach Delay, s/veh LOS			1	2.0	В		8	.3		А	7.	4		A	6	5.6		А
Intersection Delay, s/veh LO	s					9.	.4								A			

				H	CS R	oun	ndab	oui	ts Re _l	port								
General Information							9	Site	Infor	matio	n			_			_	
Analyst	Inviste	c Consi	ulting l	Ltd.			*			Inter	section	_		Г	_			_
Agency or Co.	Town o	of Wain	wright				-			E/W	Street N	ame		н	lwy 14			
Date Performed	12/23/	2024				1			+	N/S	Street Na	ame		1	St			
Analysis Year	2043					ļ (W + S		† >	Anal	ysis Time	Period, I	nrs	1	.00			
Time Analyzed	PM Pe	ak Hou	r		*					Peak	Hour Fa	ctor		0	.70			
Project Description	Wainw	right Tr	affic S	tudy			$\overline{}$	*		Juris	diction			Т	EC			
Volume Adjustments	and Si	te Cł	narao	teristi	ics													
Approach		E	B				WB				1	٨B		Т		SB		
Movement	U	L	Т	R	U	Т	L	т	R	U	L	Т	R		U	L	Т	R
Number of Lanes (N)	0	0	1	0	0		0	1	0	0	0	1	0		0) –	1	0
Lane Assignment				LTR				I	LTR			Ľ	R	\top			Ľ	.TR
Volume (V), veh/h	0	5	212	34	0	T ·	78	291	42	0	51	34	251		0 3	1	14	5
Percent Heavy Vehicles, %	0	5	5	5	0		5	5	5	0	5	5	5		0	5	5	5
Flow Rate (VPCE), pc/h	0	8	318	51	0	1	17	437	63	0	77	51	377		0 4	7	21	8
Right-Turn Bypass	1	No	one				None	e			N	one		Ť		None		
Conflicting Lanes			1				1					1				1		
Pedestrians Crossing, p/h		0					0					0				0		
Proportion of CAVs, %							0											
Critical and Follow-L	nt																	
Approach		E	B				WB			Τ	1	١B		Τ		SB	_	
Lane	Left	Ri	ght Bypass		Le	ft	Righ	t	Bypass	Lef	: Ri	ght l	Bypass		Left	Right	Τ	Bypass
Critical Headway, s		4.9	763				4.976	3			4.9	763				4.9763		
Follow-Up Headway, s		2.6	087				2.608	37			2.6	5087				2.6087		
Flow Computations,	Capacit	ty an	d v/	c Ratio	os													
Approach		E	B				WB			T	1	NB		Т		SB		
Lane	Left	Ri	ght	Bypass	Le	ft	Righ	t	Bypass	Lef	: Ri	ght l	Bypass		Left	Right		Bypass
Entry Flow (ve), pc/h		3	77				617				5	05				76	T	
Entry Volume, veh/h		3	59				588				4	.81				72	+	
Circulating Flow (v _c), pc/h		1	85				136				3	73				631		
Exiting Flow (vex), pc/h		7	42				522				1	22				189		
Capacity (cpce), pc/h		11	43				1201	1			g	43				725	Т	
Capacity (c), veh/h		10	88				1144	1			8	98				691	T	
v/c Ratio (x)		0.	33				0.51				0	.54				0.10	T	
Delay and Level of S	ervice																	
Approach	EB				_				WB	_		NB	_			SB		_
Lane			Left	Righ	nt By	pass	Left		Right	Bypass	Left	Righ	: Вур	bass	Left	Rigl	nt	Bypass
Lane Control Delay (d), s/veh				6.6				1	9.0			11.3				6.3		
Lane LOS			A					+	A			В				A		
95% Queue Length, Q ₉₅ (veh)) 1.5					1	3.1			3.4				0.4				
95% Queue Length, Q ₉₅ (m)) 11.89		9			1	24.57			26.94				3.1	7			
Approach Delay, s/veh LOS			6	.6	A		9	9.0		A	11.	3	В		6.3	3		А
Intersection Delay, s/veh LO	S			_	9	.0							Å	4				

				HC	S Roi	inda	bou	ts Re	oort							
General Information							Site	Infor	matio	n						
Analyst	Inviste	c Consi	ulting l	_td.		+			Inter	section						
Agency or Co.	Town o	of Wain	wright			1.	-		E/W	Street Na	me		Hwy	14		
Date Performed	12/23/	2024			\Box			+	N/S S	Street Na	me		1 St			
Analysis Year	2043				▼ ↓	W	† Ε S) ↑ ≻	Analy	/sis Time	Period, hr	s	1.00			
Time Analyzed	AM Pe	ak Hou	r		*				Peak	Hour Fac	tor		0.70			
Project Description	Wainw	right Tr	affic S	tudy			→ ▼ *		Juriso	diction			TEC			
Volume Adjustments	and Si	te Cł	narao	teristi	cs	-										
Approach		E	B			V	VB			N	В				SB	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Number of Lanes (N)	0	0	1	0	0	0	1	0	0	0	1	0	0	0	1	0
Lane Assignment	<u> </u>			LTR				LTR			LTF	t I		-		LTR
Volume (V), veh/h	0	10	329	108	0	194	263	52	0	14	35	122	0	58	24	6
Percent Heavy Vehicles, %	0	5	5	5	0	5	5	5	0	5	5	5	0	5	5	5
Flow Rate (VPCE), pc/h	0	15	494	162	0	291	395	78	0	21	52	183	0	87	36	9
Right-Turn Bypass		None					one			No	one				None	
Conflicting Lanes			1				1				1				1	
Pedestrians Crossing, p/h		0					0			()				0	
Proportion of CAVs, %									0			I				
Critical and Follow-U	p Head	lway	Adj	ustmer	nt											
Approach		E	B			V	VB			N	B				SB	
Lane	Left	Ri	ight Bypass		Left	Ri	ght	Bypass	Left	Rig	ght By	/pass	Left		Right	Bypass
Critical Headway, s		4.9	763			4.9	763			4.9	763			4	4.9763	
Follow-Up Headway, s		2.6	087			2.6	087			2.6	087			í	2.6087	
Flow Computations,	Capaci	ty an	d v/	c Ratio	s	_										
Approach		E	B			V	VB		T	N	B				SB	
Lane	Left	Rig	ght	Bypass	Left	Ri	ght	Bypass	Left	Rig	ght By	/pass	Left		Right	Bypass
Entry Flow (ve), pc/h		6	71			7	64			2!	56				132	
Entry Volume, veh/h		6	39			7	28			24	14				126	
Circulating Flow (vc), pc/h		4	14				38			59	96				707	
Exiting Flow (vex), pc/h		7	64			4	25			14	45				489	
Capacity (cpce), pc/h		9	05			12	262			7:	51			Τ	671	
Capacity (c), veh/h		8	62			12	201			7	16				639	
v/c Ratio (x)		0.	74			0.	.61			0.	34				0.20	
Delay and Level of S	ervice															
Approach	EB					Т	_	WB			NB	_	Т	_	SB	
Lane			Left	Righ	t Bypa	s L	eft	Right	Bypass	Left	Right	Вура	ss L	.eft	Right	Bypass
Lane Control Delay (d), s/veh				19.6				10.6			9.3				8.0	
Lane LOS			С					В			A				А	
95% Queue Length, Q ₉₅ (veh)	8.0						4.5			1.5				0.7		
95% Queue Length, Q ₉₅ (m)		63.40)			35.66			11.89				5.55		
Approach Delay, s/veh LOS			19	9.6	С		10.6		В	9.3		A		8.0		A
Intersection Delay, s/veh LO	S					13.5							В			

				Н	CS	Rou	ndal	bou	ts Re	por	rt								
General Information					_			Site	e Infor	mat	tior	n					_		
Analyst	Inviste	c Cons	ulting l	Ltd.	Т		-			lı	nterse	ection			Т		_		
Agency or Co.	Town o	of Wain	wright	:			•	- ^		E	/W S	treet Na	me		F	lwy 14			
Date Performed	12/23/	2024				1					N/S St	treet Na	me		1	St			
Analysis Year	2043					┥ ↓ (W		↑ ≽	A	Analys	sis Time	Period, ł	irs	1	.00			
Time Analyzed	PM Pea	ak Hou	r		l	÷				Р	Peak H	Hour Fac	tor		0	.70			
Project Description	Wainw	right Ti	raffic S	tudy			-	+		J	urisd	iction			Т	EC			
Volume Adjustments	and Si	te Cł	narao	cterist	ics	5	<u> Michellessa</u>		<u>.</u>										
Approach		E	EB		Т		W	/B		Т		N	В		Τ		S	В	
Movement	U	L	Т	R		U	L	Т	R		U	L	Т	R		U	L	Т	R
Number of Lanes (N)	0	0	1	0		0	0	1	0		0	0	1	0		0	0	1	0
Lane Assignment			LTR						LTR				LT	R					LTR
Volume (V), veh/h	0	6	254 41			0	94	349	50		0	61	41	301		0	37	17	6
Percent Heavy Vehicles, %	0	5	5	5	T	0	5	5	5		0	5	5	5		0	5	5	5
Flow Rate (VPCE), pc/h	0	9	381	62	T	0	141	524	75		0	92	62	452		0	56	26	9
Right-Turn Bypass		None					No	ne				No	ne				No	ne	
Conflicting Lanes			1		Ť		1	1				1	1				1		
Pedestrians Crossing, p/h		0					()				()				()	
Proportion of CAVs, %						0													
Critical and Follow-U	p Head	lway	Adj	ustme	ent														
Approach		E	EB		Т		W	/B		Τ		N	В		Τ		S	В	
Lane	Left	Ri	ght Bypass		5	Left	Rig	ght	Bypass		Left	Ric	ght E	Sypass		Left	Rig	jht	Bypass
Critical Headway, s		4.9	763				4.9	763				4.9	763				4.97	763	
Follow-Up Headway, s		2.6	6087				2.60	087				2.60	087				2.60	087	
Flow Computations,	Capacit	ty an	d v/	c Rati	os														
Approach		E	EB		Т		W	/B		Т		N	В		Т		S	B	
Lane	Left	Ri	ght	Bypass	5	Left	Ric	ght	Bypass	+	Left	Ric	ght E	sypass		Left	Ric	jht	Bypass
Entry Flow (ve), pc/h		4	52		T		74	40				60)6				9	1	
Entry Volume, veh/h		4	30		╈		70)5				57	77				8	7	
Circulating Flow (v _c), pc/h		2	23		T		16	53				44	46				75	57	
Exiting Flow (vex), pc/h		8	89		\uparrow		62	25				14	16				22	29	
Capacity (cpce), pc/h		1(099		T		11	69				87	76				63	88	
Capacity (c), veh/h		1(047		+		11	13				83	34				60)7	
v/c Ratio (x)		0.	.41				0.0	63				0.0	69				0.1	14	
Delay and Level of S	ervice				_							_							
Approach	EB			В		T	_	WB	_			NB		_		_	SB		
Lane			Left	Rig	ht	Bypass	Le	ft	Right	Вура	ass	Left	Right	Ву	pass	Left	F	Right	Bypass
Lane Control Delay (d), s/veh				7.	9				11.9				17.3				T	7.6	
Lane LOS				A	١.				В				С				\uparrow	А	
95% Queue Length, Q ₉₅ (veh)) 2.1					5.1				6.4				T	0.5				
95% Queue Length, Q ₉₅ (m)	16.64		64				40.42				50.72					3.96			
Approach Delay, s/veh LOS			7	.9		A	1	11.9		В		17.3	3	С		7.	6		A
Intersection Delay, s/veh LO	OS						12.5								I	B			

This page intentionally left blank

This page intentionally left blank

Site	Access /	Design Ve	h - Existing	Remarks	Design Veh - TWLTL		Remarks
Sile	Intersection	IN	OUT		IN	OUT	Remarks
1	1 St (N&S)	WB-21	WB-21	 Exhibit EX 1.1, 1.2, 1.3 - The following location is tight for WB-21 Design Vehicle: Exh EX 1.1 - N Leg too narrow, need to widen N Leg; Exh EX 1.3 - May need to widen NEC. 	WB-21	WB-21	 Exhibit TWLTL 1.1, 1.2, 1.3 - The following location is tight for WB-21 Design Vehicle: Exh TWLTL 1.1 - N Leg too narrow, need to widen N Leg; Exh TWLTL 1.2 - May need Stopboxes; Exh TWLTL 1.3 - May need to widen NEC.
2	Access (s) to Trail General Contracting	I-BUS	I-BUS	Exhibit EX 2.1, 2.2 - Access can accommodate I-BUS Design Vehicle	I-BUS	I-BUS	Exhibit TWLTL 2.1, 2.2 - Access can accommodate I-BUS Design Vehicle
3	2 St (N)	WB-21	WB-21	 Exhibit EX 3.1, 3.2 - The following location is tight for WB-21 Design Vehicle: Exh EX 3.1 - tight for concurrent EBLT/SBRT, may need to widen NEC; Exh EX 3.2 - tight for concurrent WBRT/SBLT; may need to widen NEC. 	WB-21	WB-21	Exhibit TWLTL 2.1, 2.2 - The following location is tight for WB-21 Design Vehicle: Exh TWLTL 3.1 - tight for concurrent EBLT/SBRT, may need to widen NWC; Exh TWLTL 3.2 - tight for concurrent WBRT/SBLT; may need to widen NEC.
4	Access (S) to Petroleum Park	I-BUS	I-BUS	Exhibit EX 4.1, 4.2 - Access can accommodate I-BUS Design Vehicle. Some overlaps in opposing swept paths within the site - acceptable as occurrences expected to be infrequent.	I-BUS	I-BUS	Exhibit TWLTL 4.1, 4.2 - Access can accommodate I-BUS Design Vehicle. Some overlaps in opposing swept paths within the site - acceptable as occurrences expected to be infrequent.
5	Access (S) to ESSO	WB-21	WB-21 (RT out to Hwy 14 via Site E Access @14 St)	Exhibit EX 5.1, 5.2 - Access can accommodate WB-21 Design Vehicle, except for NBRT exiting the site at an acute angle - too tight even for I-BUS. I-BUS making this exiting movement would need to take up a large part of the site access to make the wide turn	WB-21	WB-21 (RT out to Hwy 14 via Site E Access @14 St)	3 7 1

Site	Access /	Design Vel	n - Existing	Demerke	Design Veh - TWLTL	h - TWLTL	Demerke
Site	Intersection	IN	OUT	Remarks	IN	OUT	Remarks
6	6 St (S)	I-BUS	I-BUS	Exhibit EX 6.1, 6.2, 6.3 - Intersection can accommodate I-BUS Design Vehicle. WB-21 can enter ESSO (at SWC) from the east via 6 St (EBLT, Zig-Zag) and exit ESSO to the east also via 6 St (NBRT, Zig-Zag)	I-BUS	I-BUS	Exhibit TWLTL 6.1, 6.3 - Intersection can accommodate I-BUS Design Vehicle. WB-21 can enter ESSO (at SWC) from the east via 6 St (EBLT, Zig-Zag) and exit ESSO to the east also via 6 St (NBRT, Zig-Zag)
7	Access to Bison Motel	I-BUS	I-BUS	Did not prepare exhibit or swept path check (Should consider narrowing down site access which currently consists of a 24m west access and a 15m east access. Desirable to narrow down the west access to around 12m. Closure of the east access should be considered.	I-BUS	I-BUS	Did not prepare exhibit or swept path check (Should consider narrowing down site access which currently consists of a 24m west access and a 15m east access. Desirable to narrow down the west access to around 12m. Closure of the east access should be considered.
8	Access (S) to Boston Pizza / Subway	I-BUS	I-BUS	Exhibit EX 8.1, 8.2 - Access can accommodate I-BUS Design Vehicle	I-BUS	I-BUS	Exhibit TWLTL 8.1, 8.2 - Access can accommodate I-BUS Design Vehicle
9	Access (S) to MD of Wainwright	I-BUS	I-BUS	Exhibit EX 9.1, 9.2 - Access can accommodate I-BUS Design Vehicle	I-BUS	I-BUS	Exhibit TWLTL 9.1, 9.2 - Access can accommodate I-BUS Design Vehicle
10	9 St (N)	I-BUS	I-BUS	Exhibit EX 10.1, 10.2 - Intersection can accommodate I-BUS Design Vehicle	I-BUS	I-BUS	Exhibit TWLTL 10.1, 10.2 - Intersection can accommodate I-BUS Design Vehicle
11	Access (N) to KFC	I-BUS	I-BUS	Exhibit EX 11.1, 11.2 - Access can accommodate I-BUS Design Vehicle	I-BUS	I-BUS	Exhibit TWLTL 11.1, 11.2 - Access can accommodate I-BUS Design Vehicle
12	10a St (N/S)	I-BUS	I-BUS	 Exhibit EX 12.4, 12.5, 12.6 - Intersection can accommodate I-BUS Design Vehicle. Exhibit EX 12.1, 12.2, 12.3 - need to increase corner radii (all 4 corners) if want to accommodate WB-21, or WB-21 will need to make wide right turns, taking up most of 10a St 	I-BUS	I-BUS	Exhibit TWLTL 12.4, 12.5, 12.6 - Intersection can accommodate I-BUS Design Vehicle. Exhibit TWLTL 12.1, 12.2, 12.3 - need to increase corner radii (all 4 corners) if want to accommodate WB-21, or WB-21 will need to make wide right turns, taking up most of 10a St

	Access / Intersection	Design Veh - Existing			Design Veh - TWLTL		
Site		IN	OUT	Remarks	IN	OUT	Remarks
13	Access (S) to Royal Pizza / Domino Pizza	I-BUS	I-BUS	Did not prepare exhibit or swept path check	I-BUS	I-BUS	Did not prepare exhibit or swept path check
14	West Access (N) to Esthetics	1-direction for I-BUS	1-direction for I-BUS	Did not prepare exhibit or swept path check (Consider closing either West or East Access)	1-direction for I-BUS	1-direction for I-BUS	
15	East Access (N) to Esthetics	1-direction for I-BUS	1-direction for I-BUS	Did not prepare exhibit or swept path check (Consider closing either West or East Access)	1-direction for I-BUS	1-direction for I-BUS	
16	Access (S) to Jebb's Joint	1-direction for I-BUS	1-direction for I-BUS	Did not prepare exhibit or swept path check	1-direction for I-BUS	1-direction for I-BUS	Did not prepare exhibit or swept path check
17	Access (S) to Husky Vacant Site (Right- In/Right-Out Proposed)	WB-21 (via Hwy 14 or 14 St)	WB-21 (via 14 St)	Exhibit EX 17.1 - WB-21 can access Site from Hwy 14 West either through the North Access (zig-zag) or the East Access (U-Turn from Hwy 14, via 14 St). Can exit from Site to Hwy 14 by making a right turn from the North Access, or via the East Access on 14 St and then left or right at 14 St	n/a	n/a	n/a
18	Access (N) to Fas Gas Plus (Right-In/Right- Out Proposed)	WB-21	WB-21	Exhibit EX 18.1, 18.2 - Exhibit 18.1 - WB-21 can exit FAS GAS to Hwy 14 West through the South Access. Exhibit EX 18.2 - WB-21 can enter FAS GAS from Hwy 14 E either through the South Access (U-Turn) or the East Access (Zig-Zag from Hwy 14, via 14 St).	n/a	n/a	n/a

0:44	Access / Intersection	Design Veh - Existing		Remarks	Design Ve	h - TWLTL	Demerika
Site		IN	OUT	Remarks	IN	OUT	Remarks
19	14 St (N/S)	WB-21	WB-21	 Exhibit B1X, B2X, B3X, B4X, B5X. Exhibit B1X - Need to widen N Leg to provide 2 SB lanes; Assign LT lane at N & S Legs; Move Stopline back at all 4 Legs. Exhibit B4X & B5X - Create WBRT Lane. Widen East Outer Separation (NEC) to accommodate Zig-Zag from Hwy 14 EB to NE Service Rd EB, and may need to widen north edge of NE Service Rd to accommodate U-Turn from Hy 14 WB-to-SE Service Rd EB. 	WB-21	WB-21	n/a
20	15 St (S)	I-BUS	I-BUS	Exhibit EX 20.1, 20.2 - Intersection can accommodate I-BUS Design Vehicle. It is too narrow for WB-21. WB-21 will need to make a wide turn for making either a right or left turn into 15 St, taking up most of the width of 15 St.	I-BUS	I-BUS	Exhibit TWLTL 20.1, 20.2 - Intersection can accommodate I-BUS Design Vehicle. It is too narrow for WB-21. WB-21 will need to make a wide turn for making either a right or left turn into 15 St, taking up most of the width of 15 St.
21	Access (S) to EMCON Hwy Maintenance	1-direction for WB-21	1-direction for WB-21	Exhibit EX 21.1, 21.2 - Access can accommodate one-directional travel of a WB- 21 Design Vehicle. Acceptable as it is unlikely to have two WB-21 trucks entering and exiting at the same time	1-direction for WB-21	1-direction for WB-21	Exhibit TWLTL 21.1, 21.2 - Access can accommodate one-directional travel of a WB- 21 Design Vehicle. Acceptable as it is unlikely to have two WB-21 trucks entering and exiting at the same time
22	Access (S) to Wainwright Seed Cleaning Plant	1-direction for WB-21	1-direction for WB-21	Exhibit EX 22.1, 22.2 - Access can accommodate one-directional travel of a WB- 21 Design Vehicle. Acceptable as it is unlikely to have two WB-21 trucks entering and exiting at the same time	1-direction for WB-21	1-direction for WB-21	Exhibit TWLTL 22.1, 22.2 - Access can accommodate one-directional travel of a WB- 21 Design Vehicle. Acceptable as it is unlikely to have two WB-21 trucks entering and exiting at the same time
23	18 St (N) (Closure proposed)	n/a	n/a	n/a	n/a	n/a	n/a

Site	Access / Intersection	To/Froi	n 23 St	Remarks	To/From North Service Rd		Remarks
24	18 St (S)	WB-21	WB-21	Exhibit EX 24.1, 24.2 - Intersection can accommodate WB-21 Design Vehicle	n/a	n/a	Exhibit TWLTL 24.1, 24.2 - Intersection can accommodate WB-21 Design Vehicle
25	23 St (N)	WB-21	WB-21	Turn Path ALC-A1, A2, C1-X. Exh ALC-A2 ALC-C1-X - Need to widen NWC and East Outer Separation (NEC).	n/a	n/a	 Turn Path ALC-B1, B4-X, C5-X, D3-X, D4-X. Exh ALC-B1 & ALC-D3X - Need to widen East Outer Separation (NEC). Exh ALC-B4-X Need to widen East Outer Separation and NWC. Exh ALC-C5X - Need to widen West Outer Separation. Exh ALC-D4X - Need to widen East & West Outer Separation.
26	23 St (S) - (Closure Proposed)	n/a	n/a	n/a	n/a	n/a	n/a

Site	Access /			Remarks		orth Service	Remarks
0.110	Intersection				Road and	13 Avenue	
27	27 St (N&S)	WB-21	WB-21	Exhibit 1, 2. Exhibit 1 - Shows Hwy 14 WBRT swept path will clear the proposed centre median at the South Leg. Also shows adequate separation between the EBLT and WBLT swept paths. Exhibit 2 - shows 27 St NBLT swept path can clear the Centre Median north median nose. Also shows adequate separation between the NBLT and SBLT swept paths.	n/a	n/a	 Exhibit 1, 2, 3, 4, 5. Exhibit 1 - shows swept path of LT trucks from 27 St to NW Service Road. Also shows truck making a U-Turn from the E Leg of 13 Ave to Hwy 14 EB, and truck making a Right Turn from 27 St to the W Leg of 13 Ave. Exhibit 2 - shows concurrent NBLT and EBRT of trucks turning at the 27 St/NW Service Road junction. Also shows Zig-Zag turns of truck from Hwy 14 EB to 13 Ave EB. Also shows trucks turning right from 13 Ave (W) to 27 St (S). Exhibt 3 - shows the following U-Turns: EB from NW Service Road U-Turn to WN on Hwy 14; EB from Hwy 14 U-Turn to WB on 13 Ave (WB); EB on 13 Ave (W) U-Turn to Hwy 14 WB. Exhibit 4 - shows U-Turn: Hwy 14 EB U-Turn to EB on 13 Ave (E). Also shows opposing left turns at the 13 Ave/27 St junction. Exhibit 5 - shows Zig-Zag movement from NW Service Road Zig-Zag to Hwy 14 EB. Also shows Zig-Zag to Hwy 14 EB. Also shows Zig-Zag to Hwy 14 EB. Also shows a concurrent WBLT from 13 Ave (E) to 27 St (S), and NBRT from 27 St (S) to 13 Ave (E)

Swept Path Check

01 - 1 Street

Hwy 14 & Access 1 (1 St) - (EX 1.1) Swept Path Plot 1

Hwy 14 & Access 1 (1 St) – (EX 1.2) Swept Path Plot 2

Hwy 14 & Access 1 (1 St) – (EX 1.3) Swept Path Plot 3

Hwy 14 & Access 1 (1 St) - (TWLTL 1.1) Swept Path Plot 1

Hwy 14 & Access 1 (1 St) – (TWLTL 1.2) Swept Path Plot 2

Hwy 14 & Access 1 (1 St) – (TWLTL 1.3) Swept Path Plot 3 Swept Path Check

02 - Access to Trail General Contracting

Hwy 14 & Access 2 (Ex 2.1) Swept Path Plot 1

Hwy 14 & Access 2 (Ex 2.2) Swept Path Plot 2

Hwy 14 & Access 2 (TWLTL 2.1) Swept Path Plot 1

Hwy 14 & Access 2 (TWLTL 2.2) Swept Path Plot 2 Swept Path Check

03 - 2 Street

Hwy 14 & Access 2 (2 St) (Ex 3.1) Swept Path Plot 1

Hwy 14 & Access 2 (2 St) (Ex 3.2) Swept Path Plot 2

Hwy 14 & Access 2 (2 St) (TWLTL 3.1) Swept Path Plot 1

Hwy 14 & Access 2 (2 St) (TWLTL 3.2) Swept Path Plot 2

04 - Access to Petroleum Park

Hwy 14 & Access 4 (Petroleum Park) — (EX 4.1) Swept Path Plot 1

Hwy 14 & Access 4 (Petroleum Park) — (EX 4.2) Swept Path Plot 2

Hwy 14 & Access 4 (Petroleum Park) - (TWLTL 4.1) Swept Path Plot 1

Hwy 14 & Access 4 (Petroleum Park) – (TWLTL 4.2) Swept Path Plot 2

05 - Access to ESSO

Hwy 14 & Access **5** (Esso) (Ex 5.1) Swept Path Plot 1

Hwy 14 & Access 5 (Esso) (Ex 8.2) Swept Path Plot 2

Hwy 14 & Access 5 (Esso) (TWLTL 8.1) Swept Path Plot 1

Hwy 14 & Access **5** (Esso) (TWLTL 8.2) Swept Path Plot 2

06 - 6 Street

Hwy 14 & Access 6 - (EX 6.1) Swept Path Plot 1

Hwy 14 & Access 6 - (EX 6.2) Swept Path Plot 2

Hwy 14 & Access 6 - (EX 6.3) Swept Path Plot 3

Hwy 14 & Access 5 - (TWLTL 6.1) Swept Path Plot 1

Hwy 14 & Access 5 - (TWLTL 6.3) Swept Path Plot 3

07 - Access to Bison Motel

08 - Access to Boston Pizza

Hwy 14 & Access **8** (Boston Pizza/Subway) (Ex 8.1) Swept Path Plot 1

Hwy 14 & Access **8** (Boston Pizza/Subway) (Ex 8.2) Swept Path Plot 2

Hwy 14 & Access **8** (Boston Pizza/Subway) (TWLTL 8.1) Swept Path Plot 1

Hwy 14 & Access **8** (Boston Pizza/Subway) (TWLTL 8.1) Swept Path Plot 2

09 - Access to M.D. of Wainwright

Existing Scenario Hwy 14 & Access 9 (M.D. of Wainwright Office) – (EX 9.1) Swept Path Plot 1

Existing Scenario Hwy 14 & Access 9 (M.D. of Wainwright Office) – (EX 9.2) Swept Path Plot 2

TWLTL Scenario Hwy 14 & Access 9 (M.D. of Wainwright Office) – (TWLTL 9.1) Swept Path Plot 1

TWLTL Scenario Hwy 14 & Access 9 (M.D. of Wainwright Office) – (TWLTL 9.2) Swept Path Plot 2

10 - 9 Street

Hwy 14 & Access **10**(9 St) - (EX 9.1) Swept Path Plot 1

Hwy 14 & Access **10**(9 St) – (TWLTL 9.1) Swept Path Plot 1

Hwy 14 & Access **10** (9 St) – (TWLTL 9.2) Swept Path Plot 2

11 - Access to KFC

Hwy 14 & Access **11** - (Ex **11.1**) Swept Path Plot 1

Hwy 14 & Access **11** - (Ex **11.2**) Swept Path Plot 2

Hwy 14 & Access **11** - (TWLTL **11.1**) Swept Path Plot 1

Hwy 14 & Access 11 - (TWLTL 11.2) Swept Path Plot 2 Swept Path Check

12 - 10a Street

Hwy 14 & Access 12 (10A St) - (Ex 12.1) Swept Path Plot 1

Hwy 14 & Access 12 (10A St) – (Ex 12.2) Swept Path Plot 2

Hwy 14 & Access 12 (10A St) – (Ex 12.3) Swept Path Plot 3

Hwy 14 & Access 12 (10A St) – (Ex 12.4) Swept Path Plot 4

Hwy 14 & Access 12 (10A St) – (Ex 12.5) Swept Path Plot 5

Hwy 14 & Access 12 (10A St) - (Ex 12.6) Swept Path Plot 6

Hwy 14 & Access 12 (10A St) - (TWLTL 12.1) Swept Path Plot 1

Hwy 14 & Access 12 (10A St) – (TWLTL 12.2) Swept Path Plot 2

Hwy 14 & Access 12 (10A St) – (TWLTL 12.3) Swept Path Plot 3

Hwy 14 & Access 12 (10A St) - (TWLTL 12.4) Swept Path Plot 4

Hwy 14 & Access 12 (10A St) – (TWLTL 12.5) Swept Path Plot 5

Hwy 14 & Access 12 (10A St) - (TWLTL 12.6) Swept Path Plot 6 Swept Path Check

17 & 18 - Accesses to Fas Gas & Vacant Lot

Hwy 14 & Access 17 - (Ex 17.1) Swept Path Plot 1

Hwy 14 & Access 18 - (Ex 18.1) Swept Path Plot 1

Hwy 14 & Access 18 - (Ex 18.2) Swept Path Plot 2 Swept Path Check

19 - 14 Street

Hwy 14 & Access 19 (14 St) Swept Path Plot B1X

Short Term Scenario

Hwy 14 & Access 19 (14 St) Swept Path Plot B2X

Hwy 14 & Access 19 (14 St) Swept Path Plot B3X

Short Term Scenario

Hwy 14 & Access 19 (14 St) Swept Path Plot B4X

Short Term Scenario

Hwy 14 & Access 19 (14 St) Swept Path Plot B5X Swept Path Check

20 - 15 Street

Hwy 14 & Access 20 (15 St) – (Ex 20.1) Swept Path Plot 1

Hwy 14 & Access 20 (15 St) – (Ex 20.2) Swept Path Plot 2

Hwy 14 & Access 20 (15 St) – (Ex 20.3) Swept Path Plot 3

Hwy 14 & Access 20 (15 St) - (Ex 20.4) Swept Path Plot 4

Hwy 14 & Access 20 (15 St) – (TWLTL 20.1) Swept Path Plot 1

Hwy 14 & Access 20 (15 St) – (TWLTL 20.2) Swept Path Plot 2 Swept Path Check

21 - Access to EMCON Services

Hwy 14 & Access 21 (EMCO) - (Ex 21.1) Swept Path Plot 1

Hwy 14 & Access 21 (EMCO) – (Ex 21.2) Swept Path Plot 2

Hwy 14 & Access 21 (EMCO) - (TWLTL 21.1) Swept Path Plot 1

Hwy 14 & Access 21 (EMCO) – (TWLTL 21.2) Swept Path Plot 2
07 - Access to Bison Motel

08 - Access to Boston Pizza

09 - Access to M.D. of Wainwright

10 - 9 Street

11 - Access to KFC

12 - 10a Street

17 & 18 - Accesses to Fas Gas & Vacant Lot

19 - 14 Street

20 - 15 Street

21 - Access to EMCON Services

22 - Access to Seed Cleaning Plant

Existing Scenario

Hwy 14 & Access 22 (Seed Cleaning Plant) — (Ex 22.1) Swept Path Plot 1

Existing Scenario

Hwy 14 & Access 22 (Seed Cleaning Plant) - (Ex 22.2) Swept Path Plot 2

TWLTL Scenario

Hwy 14 & Access 22 (Seed Cleaning Plant) - (TWLTL 22.1) Swept Path Plot 1

TWLTL Scenario Hwy 14 & Access 22 (Seed Cleaning Plant) - (TWLTL 22.2) Swept Path Plot 2

24 - 18 Street (S)

Existing Scenario

Hwy 14 & Access 24 (18 St) – (Ex 24.1) Swept Path Plot 1

Existing Scenario

Hwy 14 & Access 24 (18 St) - (Ex 24.2) Swept Path Plot 2

TWLTL Scenario - TWLT 24.1

Hwy 14 & 18 St Swept Path Plot C1X

TWLTL Scenario - TWLTL 24.2

Hwy 14 & 18 St Swept Path Plot C2X

25 - 23 Street (N)

27 - 27 Street

This page intentionally left blank